Difference between revisions of "GEANT Moller Simulations Comparison"
(2 intermediate revisions by the same user not shown) | |||
Line 34: | Line 34: | ||
<center><math>\rho_{target}\times l_{target}=\frac{70.85 kg}{1 m^3}\times \frac{1 mole}{2.02 g} \times \frac{1000g}{1 kg} \times \frac{6\times10^{23} molecule}{1 mole} \times \frac{2\ atoms}{molecule}\times \frac{1m^3}{(100 cm)^3} \times \frac{5 cm}{ } \times \frac{1 \times 10^{-24} cm^{2}}{barn} =.21 barns^{-1}</math></center> | <center><math>\rho_{target}\times l_{target}=\frac{70.85 kg}{1 m^3}\times \frac{1 mole}{2.02 g} \times \frac{1000g}{1 kg} \times \frac{6\times10^{23} molecule}{1 mole} \times \frac{2\ atoms}{molecule}\times \frac{1m^3}{(100 cm)^3} \times \frac{5 cm}{ } \times \frac{1 \times 10^{-24} cm^{2}}{barn} =.21 barns^{-1}</math></center> | ||
+ | |||
+ | ---- | ||
For 1 cm length of a LH2 target: | For 1 cm length of a LH2 target: | ||
− | <center><math>\rho_{target}\times l_{target}=\frac{70.85 kg}{1 m^3}\times \frac{1 mole}{2.02 g} \times \frac{1000g}{1 kg} \times \frac{6\times10^{23} molecule}{1 mole} \times \frac{2\ atoms}{molecule}\times \frac{1m^3}{(100 cm)^3} \times \frac{1 cm}{ } \times \frac{1 \times 10^{-24} cm^{2}}{barn} =. | + | <center><math>\rho_{target}\times l_{target}=\frac{70.85 kg}{1 m^3}\times \frac{1 mole}{2.02 g} \times \frac{1000g}{1 kg} \times \frac{6\times10^{23} molecule}{1 mole} \times \frac{2\ atoms}{molecule}\times \frac{1m^3}{(100 cm)^3} \times \frac{1 cm}{ } \times \frac{1 \times 10^{-24} cm^{2}}{barn} =.042 barns^{-1}</math></center> |
From earlier simulations for random angle Phi, we know that the full range of Theta is limited depending on the target material. | From earlier simulations for random angle Phi, we know that the full range of Theta is limited depending on the target material. | ||
Line 49: | Line 51: | ||
<center>[[File:4e7_5cm_LH2_MolThetaLab.png]][[File:4e7_5cm_LH2_MolThetaLab_Detector.png]]</center> | <center>[[File:4e7_5cm_LH2_MolThetaLab.png]][[File:4e7_5cm_LH2_MolThetaLab_Detector.png]]</center> | ||
+ | |||
+ | ---- | ||
For 4e7 incident electrons: | For 4e7 incident electrons: | ||
Line 74: | Line 78: | ||
<center><math>t=1.3\times 10^{-5}\ s</math></center> | <center><math>t=1.3\times 10^{-5}\ s</math></center> | ||
+ | |||
+ | ---- | ||
For 4e8 incident electrons: | For 4e8 incident electrons: | ||
Line 99: | Line 105: | ||
<center><math>t=1.3\times 10^{-4}\ s</math></center> | <center><math>t=1.3\times 10^{-4}\ s</math></center> | ||
+ | |||
+ | ---- | ||
For 6e7 incident electrons with a 5cm long LH2 target: | For 6e7 incident electrons with a 5cm long LH2 target: | ||
Line 115: | Line 123: | ||
<center><math>\mathcal{L} \cdot t_{simulated}=\frac{N_{events}}{\sigma}</math></center> | <center><math>\mathcal{L} \cdot t_{simulated}=\frac{N_{events}}{\sigma}</math></center> | ||
− | For a Luminosity of <math>\mathcal{L}=\frac{1. | + | For a Luminosity of <math>\mathcal{L}=\frac{1.32\times 10^{11}}{barn\cdot s}</math> |
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{1.32\times 10^{11}}{barn\cdot s} \cdot t_{simulated}=\frac{4584834}{.361\ barn}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>t=9.62\times 10^{-5}\ s</math></center> | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | For 6e6 incident electrons with a 5cm long LH2 target: | ||
+ | <center><math>\sigma = \frac{N_{events}}{N_{incident}\ \rho\ \ell}=\frac{732603}{6000000\ \cdot .21barns^{-1}}=\frac{0.122}{.21 barns^{-1}}=.58 barns</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\sigma=\frac{R_{events}}{\mathcal{L}} \Rightarrow \mathcal{L}=\frac{R_{events}}{\sigma}</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\mathcal{L}=\frac{dN_{events}}{dt}\frac{1}{ \sigma}\Rightarrow \int_{0}^{t_{simulated}}\mathcal {L}\, dt= \int_{0}^{N_{events}}\frac{1}{\sigma}\, dN</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\mathcal{L} \cdot t_{simulated}=\frac{N_{events}}{\sigma}</math></center> | ||
+ | |||
+ | For a Luminosity of <math>\mathcal{L}=\frac{1.32\times 10^{11}}{barn\cdot s}</math> | ||
− | <center><math>\frac{1. | + | <center><math>\frac{1.32\times 10^{11}}{barn\cdot s} \cdot t_{simulated}=\frac{732603}{.58\ barn}</math></center> |
− | <center><math>t=9. | + | <center><math>t=9.57\times 10^{-6}\ s</math></center> |
Latest revision as of 14:22, 29 March 2018
https://wiki.iac.isu.edu/index.php/Converting_to_barns
https://wiki.iac.isu.edu/index.php/Check_Differential_Cross-Section
Converting the number of electrons scattered per angle theta to barns, we can use the relation
If the time is taken to be the same for the amount scattered as for the amount incident (the time simulated), this can be viewed as the probability of one incident electron producing a Moller event.
While this expression has no explicit dependancies on energy, the ratio is a function of the energy, as well as the physical makeup of the target.
This gives,
For 5 cm length of a LH2 target:
For 1 cm length of a LH2 target:
From earlier simulations for random angle Phi, we know that the full range of Theta is limited depending on the target material.
For 4e7 incident electrons:
For a Luminosity of
For 4e8 incident electrons:
For a Luminosity of
For 6e7 incident electrons with a 5cm long LH2 target:
For a Luminosity of
For 6e6 incident electrons with a 5cm long LH2 target:
For a Luminosity of