Difference between revisions of "Limit of Energy in Lab Frame"

From New IAC Wiki
Jump to navigation Jump to search
Line 131: Line 131:
  
  
<center><math>2(m^2-E_2^{*2})(1-\cos \theta_{2^*\ 2^{'*}})=2(m^2-E_2^{'}m)</math></center>
+
<center><math>(m^2-E_2^{*2})(1-\cos \theta_{2^*\ 2^{'*}})=(m^2-E_2^{'}m)</math></center>
 +
 
 +
 
 +
<center><math>((.511\ MeV)^2-(53\ MeV)^{*2})(1-\cos \theta_{2^*\ 2^{'*}})=((.511\ MeV)^2-E_2^{'}(.511\ MeV))</math></center>
 +
 
  
 
----
 
----

Revision as of 18:40, 15 March 2018

The t quantity is known as the square of the 4-momentum transfer

t(P1P1)2=(P2P2)2

In the CM Frame

P1=P2


P1=P2


E1=E1=E2=E2


|p1|=|p1|=|p2|=|p2|


t=(P1P1)2=(P2P2)2


t=P21+P212P1P1=P22+P222P2P2


t=2m22E1E1+2p1p1=2m22E2E2+2p2p2


t=2m22E21+2|p21|cosθ1 1=2m22E22+2|p22|cosθ2 2


where θ1 1 and θ2 2is the angle between the before and after momentum in the CM frame


Using the relativistic relation E2=m2+p2 this reduces to


t=2p21+2|p21|cosθ1 1=2p22+2|p22|cosθ2 2


t=2p21(1cosθ1 1)=2p22(1cosθ2 2)


θ0

There is no scattering, or no momentum transfer at 0 degrees since the incident momentum direction is the same as the scattered momentum direction. However, at a certain angle enough momentum must be transferred to provide the ionization energy to create a Moller electron.

θ=90

The maximum momentum is transfered at 90 degrees, i.e. cos90=0


t=2p21


This can be rewritten again using the relativistic energy relation E2=m2+p2


t=2(m2E21)=2(m2E22)

θ=180

The maximum momentum is transfered at 180 degrees, i.e. cos180=1


t=2p21(1cosθ1 1)=2p22(1cosθ2 2)


t=4p21


This can be rewritten again using the relativistic energy relation E2=m2+p2


t=4(m2E21)=4(m2E22)

In the Lab Frame

t=P21+P212P1P1=P22+P222P2P2



t=2m22E1E1+2p1p1=2m22E2E2+2p2p2


with p2=0

and E2=m

t=2m22mE2=2(m2E2m)

Maximum Moller Energy in Lab Frame

Since t is invariant between frames


t=2(m2E2m)=2(m2E22)


E2=E21m


withE253 MeV for E1=11000 MeV

The Moller electron has a maximum energy possible of:

E2=5500 MeV

Minimum Moller Energy in Lab Frame

Since t is invariant between frames


t=2(m2E2m)=0


m2=E2m


m>E2

This implies that the Moller electron has a non-zero momentum, hence it's total energy is more than it's rest mass energy. The momentum that the Moller electron would have would have to be transfered from the incident electron to the "stationary" electron bound to the detector. The binding energy of an electron bound to a hydrogen atom is 13.6 eV


t=2p21(1cosθ1 1)=2p22(1cosθ2 2)=2(m2E2m)


2p22(1cosθ2 2)=2(m2E2m)


(m2E22)(1cosθ2 2)=(m2E2m)


((.511 MeV)2(53 MeV)2)(1cosθ2 2)=((.511 MeV)2E2(.511 MeV))




\underline{Navigation}