Difference between revisions of "S-Channel"

From New IAC Wiki
Jump to navigation Jump to search
Line 51: Line 51:
  
  
<center><math>s \equiv 2m^2+2(E_1^{*2}+\vec p \ ^{*2} )</math></center>
+
<center><math>s_{CM} \equiv 2m^2+2(E_1^{*2}+\vec p \ ^{*2} )</math></center>
  
  
Line 59: Line 59:
  
  
<center><math>s \equiv 2m^2+2((m^2+\vec p \ _1^{*2})+\vec p \ _1^{*2})</math></center>
+
<center><math>s_{CM} \equiv 2m^2+2((m^2+\vec p \ ^{*2})+\vec p \ ^{*2})</math></center>
  
  

Revision as of 22:40, 8 June 2017

\underline{Navigation}

s Channel

The s quantity is known as the square of the center of mass energy (invariant mass)

s(P1+P2)2=(P1+P2)2



s(P1+P2)2


sP21+2P1P2+P22


As shown earlier, the square of a 4-momentum is


P2m2

This gives,

sm21+2P1P2+m22


For the case m1=m2=m


s2m2+2P1P2

Using the relationship


P1P2=E1E2(p1p2)


s2m2+2(E1E2p 1p 2)


In the center of mass frame of reference,

E1=E2andp 1=p 2=p 


sCM2m2+2(E21+p 2)


Using the relativistic energy equation

E2p 2+m2


sCM2m2+2((m2+p 2)+p 2)


sCM=4(m2+p 2)




\underline{Navigation}