Difference between revisions of "Theta Dependent Components"

From New IAC Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<center><math>\textbf{\underline{Navigation}}</math>
 
<center><math>\textbf{\underline{Navigation}}</math>
  
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\vartriangleleft </math>]]
+
[[Determining_Momentum_Components_After_Collision_in_CM_Frame|<math>\vartriangleleft </math>]]
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
+
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
[[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]]
+
[[Phi_Dependent_Components|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>
Line 9: Line 9:
  
  
 
+
=4.1.3.1  Theta Dependent Components=
  
 
<center>[[File:xz_lab.png | 400 px]]</center>
 
<center>[[File:xz_lab.png | 400 px]]</center>
Line 35: Line 35:
  
 
<center><math>\Longrightarrow p^'_{2(z)}\ should\ always\ be\ negative</math></center>
 
<center><math>\Longrightarrow p^'_{2(z)}\ should\ always\ be\ negative</math></center>
 +
 +
 +
 +
----
 +
  
  
 
<center><math>\textbf{\underline{Navigation}}</math>
 
<center><math>\textbf{\underline{Navigation}}</math>
  
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\vartriangleleft </math>]]
+
[[Determining_Momentum_Components_After_Collision_in_CM_Frame|<math>\vartriangleleft </math>]]
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
+
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
[[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]]
+
[[Phi_Dependent_Components|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>

Latest revision as of 15:00, 30 May 2017

\underline{Navigation}


4.1.3.1 Theta Dependent Components

Xz lab.png
Figure 3: Definition of Moller electron variables in the CM Frame in the x-z plane.
Using \theta '_2=\arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)


\Longrightarrow {p^'_{2(z)}=p^'_{2}\cos(\theta '_2)}



Checking on the sign resulting from the cosine function, we are limited to:

90θ2180π2θ2πRadians

Since,

\frac{p^'_{2(z)}}{p^'_{2}}=cos(\theta '_2)


\Longrightarrow p^'_{2(z)}\ should\ always\ be\ negative




\underline{Navigation}