Difference between revisions of "Determining Momentum Components After Collision in CM Frame"

From New IAC Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<center><math>\textbf{\underline{Navigation}}</math>
 
<center><math>\textbf{\underline{Navigation}}</math>
  
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\vartriangleleft </math>]]
+
[[Phase_space_Limiting_Particles|<math>\vartriangleleft </math>]]
 
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
 
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
[[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]]
+
[[Theta_Dependent_Components|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>
Line 9: Line 9:
  
  
 
+
=4.1.3  Determining Momentum Components After Collision in CM Frame=
  
 
The energy and total momentum of the Moller and scattered electron remain the same under a rotation in any frame of reference.  After the collision, these quantities remain the same, but the x, y, z components change.   
 
The energy and total momentum of the Moller and scattered electron remain the same under a rotation in any frame of reference.  After the collision, these quantities remain the same, but the x, y, z components change.   
Line 15: Line 15:
 
In this frame, we can cycle through values of theta from 90 to 180 degrees which physically correspond to a stationary electron being impinged by an electron.
 
In this frame, we can cycle through values of theta from 90 to 180 degrees which physically correspond to a stationary electron being impinged by an electron.
  
 +
 +
 +
 +
----
  
  
 
<center><math>\textbf{\underline{Navigation}}</math>
 
<center><math>\textbf{\underline{Navigation}}</math>
  
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\vartriangleleft </math>]]
+
[[Phase_space_Limiting_Particles|<math>\vartriangleleft </math>]]
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
+
[[VanWasshenova_Thesis#Weighted_Isotropic_Distribution_in_Lab_Frame|<math>\triangle </math>]]
[[CED_Verification_of_DC_Angle_Theta_and_Wire_Correspondance|<math>\vartriangleright </math>]]
+
[[Theta_Dependent_Components|<math>\vartriangleright </math>]]
  
 
</center>
 
</center>

Latest revision as of 14:59, 30 May 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


4.1.3 Determining Momentum Components After Collision in CM Frame

The energy and total momentum of the Moller and scattered electron remain the same under a rotation in any frame of reference. After the collision, these quantities remain the same, but the x, y, z components change.

In this frame, we can cycle through values of theta from 90 to 180 degrees which physically correspond to a stationary electron being impinged by an electron.





[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]