Difference between revisions of "Circular Cross Sections"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<center><math>\textbf{\underline{Navigation}}</math>
 
<center><math>\textbf{\underline{Navigation}}</math>
  
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\vartriangleleft </math>]]
+
[[Conic_Sections|<math>\vartriangleleft </math>]]
 
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 
[[Elliptical_Cross_Sections|<math>\vartriangleright </math>]]
 
[[Elliptical_Cross_Sections|<math>\vartriangleright </math>]]

Revision as of 18:14, 15 May 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Circular Conic Section

If the conic is an circle, e=0. This implies

[math]e=\frac{\sin (\beta)}{\sin (\alpha)}=\frac{\sin (25^{\circ})}{\sin (90-\theta)}=0[/math]


Using the relation

[math]sin(90^{\circ}-\theta)=cos(\theta)[/math]
[math]\frac{sin (25^{\circ})}{0}=cos( \theta) =\infty[/math]


The sector angle will never be perpendicular to the plane of the light cone, so this is not a physical possibility.


<-Back

Forward->