Difference between revisions of "DV MollerTrackRecon"

From New IAC Wiki
Jump to navigation Jump to search
 
(72 intermediate revisions by the same user not shown)
Line 1: Line 1:
=Moller Lund=
+
=Phi shifts=
 
 
  
 +
==gcard==
  
LUND file with Moller events (with origin of coordinates occurring at each event)
 
 
<pre>
 
<pre>
2      1      1      1      1      0      0.000563654    3.53715 0      6.2002
+
<gcard>
1 -1 1 11 0 0 0.69 -2.4999 10993.7998 10993.80 0.000511 0 0 0
 
2 -1 1 11 0 0 -0.69 2.4999 6.5852 7.08 0.000511 0 0 0
 
</pre>
 
  
 +
        <detector name="../../../../../clas12/fc/forwardCarriage" factory="TEXT$
 +
        <detector name="../../../../../clas12/dc/dc"            factory="TEXT" $
 +
        <detector name="../../../../../clas12/ec/ec"            factory="TEXT" $
 +
        <detector name="../../../../../clas12/ctof/ctof"            factory="TE$
 +
        <detector name="../../../../../clas12/ftof/ftof"            factory="TE$
 +
        <detector name="../../../../../clas12/htcc/htcc"            factory="TE$
 +
        <detector name="../../../../../clas12/pcal/pcal"            factory="TE$
 +
        <option name="BEAM_P"  value="e-, 6.0*GeV, 30.0*deg, 10*deg"/>
 +
        <option name="SPREAD_P" value="5.5*GeV, 25*deg, 180*deg"/>
 +
        <option name="SCALE_FIELD" value="clas12-torus-big, -1.0"/>
 +
        <option name="HALL_FIELD"  value="clas12-solenoid"/>
 +
        <option name="SCALE_FIELD" value="clas12-solenoid, 1.0"/>
 +
        <option name="OUTPUT" value="evio,eg12.ev"/>
  
From a GEMC run WITH the Solenoid ced is used to obtain the information from the eg12_rec.ev file. 
+
</gcard>
  
      [[File:Event29.png]]
+
</pre>
 
 
 
 
We take the phi angle from the Generated Event momentum as the initial phi angle.  The obtain the final phi angle, we can look at the final position of the electron with in the drift chambers. 
 
 
 
      [[File:Detector_position.png]]
 
 
 
Examining the position from Timer Based Tracking, we can see that after rotations about first the y-axis, then the z-axis transforms from the detector frame of reference to the lab frame of reference.
 
 
 
=Euler Angles=
 
 
 
We can use the Euler angles to perform the rotations.
 
 
 
For the rotation about the y axis.
 
 
 
[[File:Euler1.png]]
 
 
 
And the rotation about the z axis.
 
 
 
[[File:Euler2.png]]
 
 
 
=Transformation Matrix=
 
 
 
The Euler angles can be applied using a transformation matrix
 
 
 
<math>\left(
 
\begin{array}{ccc}
 
\cos (\theta ) & 0 & -\sin (\theta ) \\
 
0 & 1 & 0 \\
 
\sin (\theta ) & 0 & \cos (\theta ) \\
 
\end{array}
 
\right).\left(
 
\begin{array}{c}
 
x \\
 
y \\
 
z \\
 
\end{array}
 
\right)</math>
 
 
 
 
 
<math>=\left(
 
\begin{array}{c}
 
x \cos (\theta )-z \sin (\theta ) \\
 
y \\
 
z \cos (\theta )+x \sin (\theta ) \\
 
\end{array}
 
\right)</math>
 
 
 
 
 
 
 
 
 
For event #29, in sector 3, the location of the first interaction is given by
 
 
 
[[File:conversions.png]]
 
 
 
 
 
Converting -25 degrees to radians,
 
<math>\theta =-0.436332</math>
 
which is the rotation the detectors are rotated from the y axis.
 
 
 
<math>\left(
 
\begin{array}{ccc}
 
\cos (\theta ) & 0 & -\sin (\theta ) \\
 
0 & 1 & 0 \\
 
\sin (\theta ) & 0 & \cos (\theta ) \\
 
\end{array}
 
\right).\left(
 
\begin{array}{c}
 
-15.76 \\
 
0 \\
 
237.43 \\
 
\end{array}
 
\right)</math>
 
 
 
<math>=\left(
 
\begin{array}{c}
 
86.0588 \\
 
0. \\
 
221.845 \\
 
\end{array}
 
\right)</math>
 
 
 
Finding <math>\phi =\frac{120\ 2 \pi }{360};</math> since "sector -1" =3-1=2*60=120 degrees
 
 
 
<math>\left(
 
\begin{array}{ccc}
 
\cos (\phi ) & -\sin (\phi ) & 0 \\
 
\sin (\phi ) & \cos (\phi ) & 0 \\
 
0 & 0 & 1 \\
 
\end{array}
 
\right).\left(
 
\begin{array}{c}
 
86.0588 \\
 
0. \\
 
221.845 \\
 
\end{array}
 
\right)</math>
 
 
 
<math>\left(
 
\begin{array}{c}
 
-43.0294 \\
 
74.5291 \\
 
221.845 \\
 
\end{array}
 
\right)</math>
 
 
 
This shows how the coordinates are transformed and explains the validity of using the TBTracking information to obtain a phi angle in the lab frame.
 
 
 
 
 
 
 
=Phi shifts=
 
 
 
 
 
gcard to generate electrons.
 
 
 
 
 
  <option name="BEAM_P"  value="e-, 6.0*GeV, 30.0*deg, 10*deg">
 
  <option name="SPREAD_P" value="5.5*GeV, 25*deg, 180*deg">
 
 
 
 
 
[[File:Composite_Fields.png]]
 
 
 
 
 
 
 
[[File:GeV_graph.png]]
 
 
 
 
 
[[File:MeV_graph.png]]
 
 
 
 
 
[[File:Total_graph.png]]
 
  
 
=Cross-section =
 
=Cross-section =
==Calculations of 4-momentum components(Trial 1)==
+
[[Previous attempts]]
This trial did not take into account the initial electron energy loss as it traveled through the target material.
 
  
[[DV_Calculations_of_4-momentum_components | 4-momentum components (Not accounting for initial energy loss to scattering)]]
 
 
==Calculations of 4-momentum components(Trial 2)==
 
[[Reconstructing Moller Events]]
 
 
==Calculations of 4-momentum components (Trial 3)==
 
 
[[Energy-Theta]]
 
  
 
==Calculations of 4-momentum components (Trial 4)==
 
==Calculations of 4-momentum components (Trial 4)==
Line 164: Line 34:
 
===Prepare Data===
 
===Prepare Data===
  
Using the existing Moller scattering data from a GEANT simulation of 4E7 incident electrons, a file of just scattered momentum components can be constructed using:
+
Using the existing Moller scattering data from a GEANT simulation of 4E8 incident electrons, a file of just scattered momentum components can be constructed using:
  
 
<pre>
 
<pre>
Line 170: Line 40:
 
</pre>
 
</pre>
  
=Transfer to CM Frame=
+
===Transfer to CM Frame===
==Center of Mass Frame==
 
===4-Momentum Invariants===
 
  
<center>[[File:CM.png |400 px]]</center>
+
Reading in the data from the dat file, we use a C++ program to read the momentum components for the Scattered and Moller electrons into 4-momentum vectors defined as the Lab_final frame of reference.
<center>'''Figure 1: Definition of variables in the Center of Mass Frame'''</center>
 
  
 +
Performing a Lorentz boost to a Center of Mass frame for the two 4-vectors from the Lab_final frame of reference, we move to a frame where the energies are equal and the momentum are equal but opposite.
  
Starting with the definition for the total relativistic energy:
+
[[Relativistic Kinematics]]
  
 +
For Moller Electron energies above 500 MeV, in the Lab frame, histograms of momentum, and theta as well as a 2-D histogram of Energy vs. Theta for the Moller Electron in the CM frame will be filled.
  
<center><math>E^2\equiv p^2c^2+m^2c^4</math></center>
+
<center>[[File:MolEThetaCM_500.png]]</center>
  
 +
Using the histogram for Theta in the CM frame, we can determine the relative number of events that occur at a given angle.  This information will be used to keep the relative number of particles having the same Theta angle, but multiple Psi angles to evenly cover the detector area
  
<center><math>\Longrightarrow  {E^2}-p^2c^2=(mc^2)^2</math></center>
+
===Run for Necessary Amount to match Cross Section===
Since we can assume that the frame of reference is an inertial frame, it moves at a constant velocity, the mass should remain constant. 
+
<center>[[File:Combo3.png‎]]</center>
  
 +
Using the above plot for the target material, we can find the relative amount that each Theta angle should observe for this process which gives a [[known Moller differential cross section]].
  
<center><math>\frac {d\vec p}{dt}=0\Rightarrow \frac{d(m\vec v)}{dt}=\frac{c\ dm}{dt}\Rightarrow \frac{dm}{dt}=0</math></center>
 
  
 +
{| class="wikitable" align="center" border=1
 +
|-
 +
! Theta (degrees)
 +
! Number of events
  
<center><math> \therefore m=const</math></center>
+
|-
 
+
| 90
 
+
| 5
We can use 4-momenta vectors, i.e. <math>{\mathbf P}\equiv \left(\begin{matrix} E\\ p_x \\ p_y \\ p_z \end{matrix} \right)=\left(\begin{matrix} E\\ \vec p \end{matrix} \right)</math> ,with c=1, to describe the variables in the CM Frame.
 
 
 
 
 
 
 
Using the fact that the scalar product of a 4-momenta with itself,
 
 
 
 
 
 
 
<center><math>{\mathbf P_1}\cdot {\mathbf P^1}=P_{\mu}g_{\mu \nu}P^{\nu}=\left(\begin{matrix} E\\ p_x \\ p_y \\ p_z \end{matrix} \right)\cdot \left( \begin{matrix}1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & -1 & 0\\0 &0 & 0 &-1\end{matrix} \right)\cdot \left(\begin{matrix} E & p_x & p_y & p_z \end{matrix} \right)</math></center>
 
 
 
 
 
 
 
<center><math>{\mathbf P_1}\cdot {\mathbf P^1}=E_1E_1-\vec p_1\cdot \vec p_1 =m_{1}^2=s</math></center>
 
 
 
 
 
is invariant. 
 
 
 
 
 
Using this notation, the sum of two 4-momenta forms a 4-vector as well
 
 
 
<center><math>{\mathbf P_1}+ {\mathbf P_2}= \left( \begin{matrix}E_1+E_2\\\vec p_1 +\vec p_2 \end{matrix} \right)= {\mathbf P}</math></center>
 
 
 
The length of this four-vector is an invariant as well
 
 
 
<center><math>{\mathbf P^2}=({\mathbf P_1}+{\mathbf P_2})^2=(E_1+E_2)^2-(\vec p_1 +\vec p_2 )^2=(m_1+m_2)^2=s</math></center>
 
 
 
===Equal masses===
 
For incoming electrons moving only in the z-direction, we can write
 
 
 
 
 
<center><math>{\mathbf P_1}+ {\mathbf P_2}= \left( \begin{matrix}E_1+E_2\\ 0 \\ 0 \\ p_{1(z)}+p_{2(z)}\end{matrix} \right)={\mathbf P}</math></center>
 
 
 
 
 
 
 
 
 
 
 
We can perform a Lorentz transformation to the Center of Mass frame, with zero total momentum
 
 
 
 
 
<center><math>\left( \begin{matrix}E^*_{1}+E^*_{2}\\ 0 \\ 0 \\ 0\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}+E_{2}\\ 0 \\ 0 \\ p_{1(z)}+p_{2(z)}\end{matrix} \right)</math></center>
 
 
 
Without knowing the values for gamma or beta, we can utalize the fact that lengths of the two 4-momenta are invariant
 
 
 
<center><math>s={\mathbf P^*}^2=(E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2=(m_{1}^*+m_{2}^*)^2</math></center>
 
 
 
 
 
<center><math>s={\mathbf P}^2=(E_{1}+E_{2})^2-(\vec p_{1}+\vec p_{2})^2=(m_{1}+m_{2})^2</math></center>
 
 
 
 
 
 
 
This gives,
 
<center><math>\Longrightarrow (m_{1}^*+m_{2}^*)^2=(m_{1}+m_{2})^2</math></center>
 
 
 
 
 
Using the fact that
 
 
 
<center><math>\begin{cases}
 
m_{1}=m_{2} \\
 
m_{1}^*=m_{2}^*
 
\end{cases}</math></center>
 
since the rest mass energy of the electrons remains the same in inertial frames.
 
 
 
 
 
Substituting, we find
 
<center><math>(m_{1}^*+m_{1}^*)^2=(m_{1}+m_{1})^2</math></center>
 
 
 
 
 
 
 
<center><math>2m_{1}^*=2m_{1}</math></center>
 
 
 
 
 
 
 
<center><math>m_{1}^*=m_{1}</math></center>
 
 
 
 
 
 
 
<center><math>\Longrightarrow m_{1}=m^*_{1}\ ; m_{2}=m^*_{2}</math></center>
 
 
 
 
 
This confirms that the mass remains constant between the frames of reference.
 
 
 
 
 
 
 
 
 
===Total Energy in CM===
 
 
 
Setting the lengths of the 4-momenta equal to each other,
 
 
 
<center><math>{\mathbf P^*}^2={\mathbf P}^{'2}</math></center>
 
 
 
 
 
 
 
we can use this for the collision of two particles of mass m.  Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as
 
 
 
<center><math>(E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2=s=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2</math></center>
 
 
 
 
 
<center><math>(E^*)^2-(\vec p\ ^*)^2=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2</math></center>
 
 
 
 
 
<center><math>(E^*)^2=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2</math></center>
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>E^*=\sqrt{(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2}</math>
 
|}
 
 
 
 
 
 
 
<center><math>\left( \begin{matrix}E^*_{1}+E^*_{2}\\ p_{1(x)}^*+p_{2(x)}^* \\ p_{1(y)}^*+p_{2(y)}^* \\ p_{1(z)}^*+p_{2(z)}^*\end{matrix} \right)=\left(\begin{matrix}\gamma & 0 & 0 & -\beta \gamma\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta \gamma & 0 & 0 & \gamma \end{matrix} \right) . \left( \begin{matrix}E_{1}^'+E_{2}^'\\ p_{1(x)}^'+p_{2(x)}^' \\ p_{1(y)}^'+p_{2(y)}^' \\ p_{1(z)}^'+p_{2(z)}^'\end{matrix} \right)</math></center>
 
 
 
 
 
 
 
<center><math>\left( \begin{matrix}E^*_{1}+E^*_{2}\\ 0 \\ 0 \\ 0\end{matrix} \right)=\left(\begin{matrix}\gamma & 0 & 0 & -\beta \gamma\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta \gamma & 0 & 0 & \gamma \end{matrix} \right) . \left( \begin{matrix}E^'\\ p_{x}^' \\ p_{y}^' \\ p_{z}^'\end{matrix} \right)</math></center>
 
 
 
By the definition of the CM Frame we know
 
 
 
 
 
 
 
<center><math>\Longrightarrow\begin{cases}
 
E_2^*=\gamma(E_{2}^'+m)-\beta \gamma p_{2(z)}^' \\
 
p^*_{x}=p^'_{x}=0 \\
 
p^*_{y}=p^'_{y}=0 \\
 
p^*_{2(z)}=-\beta \gamma(E_{2}^'+m)+\gamma p_{2(z)}^'
 
\end{cases}</math></center>
 
 
 
 
 
 
 
<center><math>\Longrightarrow \begin{cases}
 
p_{1(x)}^'=-p_{2(x)}^' \\
 
p_{1(y)}^'=-p_{2(y)}^'
 
\end{cases}</math></center>
 
 
 
 
 
 
 
<center><math>\vec {p}\, ^*=\vec {p_1}^*+\vec {p_2}^*=0 \Longrightarrow \vec {p_1}^*=-\vec {p_2}^* </math></center>
 
 
 
 
 
 
 
<center><math>E^*=\sqrt{(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2}</math></center>
 
 
 
 
 
Using the relativistic definition of total energy:
 
 
 
<center><math>E^2 \equiv p^2+m^2</math></center>
 
 
 
 
 
<center><math>E_1^*=\sqrt{p_1^{*2}+m^2}</math></center>
 
 
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>E_1^*=\sqrt{p_2^{*2}+m^2}=\sqrt{(-p_1)^{*2}+m^2}=\sqrt{p_1^{*2}+m^2}</math>
 
|}
 
 
 
 
 
<center><math>\therefore E^*=E_1^*+E_2^* \Longrightarrow E_1^*=E_2^*</math></center>
 
 
 
Since the energies are equal, we use this fact to find the momenta
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>|p_1^*|=|p_2^*|=\sqrt{E_1^{*2}-m^{*2}}</math>
 
|}
 
 
 
===Moller electron Center of Mass Frame===
 
 
 
Relativistically, the x and y components remain the same in the conversion from the Lab frame to the Center of Mass frame, since the direction of motion is only in the z direction.
 
 
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>p^*_{2(x)}\Leftrightarrow p_{2(x)}'</math>
 
|}
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"  | <math>p^*_{2(y)}\Leftrightarrow p_{2(y)}'</math>
 
|}
 
 
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"  | <math>p^*_{2(z)}=\sqrt {(p^*_2)^2-(p^*_{2(x)})^2-(p^*_{2(y)})^2}</math>
 
|}
 
 
 
 
 
 
 
 
 
<center>[[File:xz_lab.png | 400 px]]</center>
 
<center>'''Figure 2: Definition of Moller electron variables in the Lab Frame in the x-z plane.'''</center>
 
 
 
 
 
<center><math>\theta '_2\equiv \arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)</math></center>
 
 
 
Following the same geometry as for the Lab frame,
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"  | <math>\Longrightarrow \theta ^*_2=\arccos \left(\frac{p^*_{2(z)}}{p^*_{2}}\right)</math>
 
|}
 
 
 
===Electron Center of Mass Frame===
 
Relativistically, the x, y, and z components have the same magnitude, but opposite direction, in the conversion from the Moller electron's Center of Mass frame to the electron's Center of Mass frame.
 
 
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>p^*_{2(x)}= -p^*_{1(x)}</math>
 
|}
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"  | <math>p^*_{2(y)}= -p^*_{1(y)}</math>
 
|}
 
 
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"  | <math>p^*_{2(z)}=-p^*_{1(z)}</math>
 
|}
 
 
 
where previously it was shown
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>|p^*_{1}|\equiv |p^*_{2}|</math>
 
|}
 
 
 
 
 
 
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>E^*_{1}\equiv E^*_{2}</math>
 
|}
 
 
 
 
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\theta_{1}^*=\pi-\theta_{1}^*</math>
 
|}
 
 
 
===Determing Angles===
 
 
 
<center>[[File:xy_lab.png | 400 px]]</center>
 
<center>'''Figure 3: Definition of Moller electron variables in the Lab Frame in the x-y plane.'''</center>
 
 
 
 
 
<center><math>\phi '_2\equiv \arccos \left( \frac{p^'_{2(x) Lab}}{p^'_{2(xy)}} \right)</math></center>
 
 
 
 
 
<center>where <math>p_{2(xy)}^'=\sqrt{(p_{2(x)}^')^2+(p^'_{2(y)})^2}</math></center>
 
 
 
 
 
<center><math>(p^'_{2(xy)})^2=(p^'_{2(x)})^2+(p^'_{2(y)})^2</math></center>
 
  
 
<center>and using <math>p^2=p_{(x)}^2+p_{(y)}^2+p_{(z)}^2</math></center>
 
 
 
<center>this gives <math>(p^'_{2})^2=(p^'_{2(xy)})^2+(p^'_{2(z)})^2</math></center>
 
 
 
<center><math>\Longrightarrow (p'_{2})^2-(p'_{2(z)})^2 = (p'_{2(xy)})^2</math></center>
 
 
 
<center><math>\Longrightarrow p_{2(xy)}^'=\sqrt{(p^'_{2})^2-(p^'_{2(z)})^2}</math></center>
 
 
 
<center>which gives<math>\phi '_2 = \arccos \left( \frac{p_{2(x)}'}{\sqrt{p_{2}^{'\ 2}-p_{2(z)}^{'\ 2}}}\right)</math></center>
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\Longrightarrow p_{2(x)}'=\sqrt{p_{2}^{'\ 2}-p_{2(z)}^{'\ 2}} \cos(\phi)</math>
 
|}
 
 
 
<center>Similarly, using <math>p_{2}^2=p_{2(x)}^2+p_{2(y)}^2+p_{2(z)}^2</math></center>
 
 
 
<center><math>\Longrightarrow p_{2}^{'\ 2}-p_{2(x)}^{'\ 2}-p_{2(z)}^{'\ 2}=p_{2(y)}^{'\ 2}</math></center>
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>p_{2(y)}'=\sqrt{p_{2}^{'\ 2}-p_{2(x)}^{'\ 2}-p_{2(z)}^{'\ 2}}</math>
 
|}
 
 
====<math>p_{x}</math> and <math>p_{y}</math> results based on <math>\phi</math>====
 
Checking on the sign from the cosine results for <math>\phi '_2</math>
 
 
 
We have the limiting range that <math>\phi</math> must fall within:
 
{| class="wikitable" align="center"
 
| style="background: grey"      | <math>-\pi \le \phi '_2 \le \pi\ Radians</math>
 
|}
 
 
<center>[[File:xy_plane.png | 400px]]</center>
 
 
Examining the signs of the components which make up the angle <math>\phi</math> in the 4 quadrants which make up the xy plane:
 
 
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ 0 \ge \phi '_2 \ge \frac{-\pi}{2}\ Radians</math>
 
 
|-
 
|-
| <center>p<sub>x</sub>=POSITIVE</center>
+
| 100
|-
+
| 5
| <center>p<sub>y</sub>=NEGATIVE</center>
 
|}
 
  
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ 0 \le \phi '_2 \le \frac{\pi}{2}\ Radians</math>
 
 
|-
 
|-
| <center>p<sub>x</sub>=POSITIVE</center>
+
| 110
|-
+
| 6
| <center>p<sub>y</sub>=POSITIVE</center>
 
|}
 
  
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ \frac{-\pi}{2} \ge \phi '_2 \ge -\pi\ Radians</math>
 
 
|-
 
|-
| <center>p<sub>x</sub>=NEGATIVE</center>
+
| 120
|-
+
| 8
| <center>p<sub>y</sub>=NEGATIVE</center>
 
|}
 
  
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ \frac{\pi}{2} \le \phi '_2 \le \pi\ Radians</math>
 
 
|-
 
|-
|<center>p<sub>x</sub>=NEGATIVE</center>
+
| 130
|-
+
| 12
| <center>p<sub>y</sub>=POSITIVE</center>
 
|}
 
 
 
===Partial Check===
 
[[Partial Check on Kinematics V2 | Partial Check]]
 
  
=Alter Phi Angles=
 
 
Using the fact that
 
 
<center><math>\cos{\phi} \equiv \frac{p_x}{\sqrt{p^2-p_z^2}}</math></center>
 
 
 
<center><math>\Longrightarrow \sqrt{p^2-p_z^2}=\frac{p_x}{\cos{\phi}}=constant</math></center>
 
 
 
We can simply use the expression
 
 
<center><math>\frac{p_x}{\cos{\phi}}=\frac{p_x'}{cos{\left(\phi+\delta \phi\right)}}</math></center>
 
 
 
 
<center><math>\Longrightarrow p_x'=\frac{p_x \times \cos{\left(\phi+\delta \phi\right)}}{\cos{\phi}}</math></center>
 
 
 
Then, using
 
 
<center><math>\sqrt{p^2-p_z^2}=\sqrt{p_x^2+p_y^2}</math></center>
 
 
 
<center><math>\Longrightarrow p_y'=\sqrt{p^2-p_z^2-p_x^{'2}}</math></center>
 
 
=Run for Necessary Amount to match Cross Section=
 
<center>[[File:MolThetaNH3.png‎]]</center>
 
 
Using the above plot for the target material, we can find the relative amount that each Theta angle should observe for this process which gives a known Moller differential cross section.
 
 
 
{| class="wikitable" align="center" border=1
 
 
|-
 
|-
! Theta (degrees)
+
| 135
! Number of events
+
| 20
  
 
|-
 
|-
| 35
+
| 140
| 130
+
| 28
  
 
|-
 
|-
 +
| 142
 
| 30
 
| 30
| 120
 
  
 
|-
 
|-
| 25
+
| 144
| 115
+
| 40
  
 
|-
 
|-
| 20
+
| 146
| 100
+
| 45
  
 
|-
 
|-
| 15
+
| 148
| 90
+
| 55
  
 
|-
 
|-
| 12
+
| 150
 
| 70
 
| 70
  
 
|-
 
|-
| 10
+
| 152
| 60
+
| 80
  
 
|-
 
|-
| 8
+
| 154
| 40
+
| 100
 
|}
 
|}
  
Line 604: Line 128:
 
we should find the change in phi needed to give an evenly distributed distribution around the xy plane for a given Theta angle.
 
we should find the change in phi needed to give an evenly distributed distribution around the xy plane for a given Theta angle.
  
 +
<center>[[File:UniformPhi.png]]</center>
  
Starting with a data file of momentum components constructed using awk as described above
+
===Alter Phi Angles===
  
<center>[[File:Screen_Shot_2016-02-07_at_3.52.37_PM.png | Starting point]]</center>
+
From a C++ program, random Energies and Angle Theta are read from the 2-D histogram created above.  Using Relativistic kinematics for CM frame, a 4-momenta vector for the Moller electron is created. Using the properties of the CM frame, a 4-momenta vector for the scattered electron is created. Using the relative counts for number of events at a given angle theta in the CM frame, multiple copies of the Moller CM 4-momenta vector are created. Since the rotation of the angle Phi does not alter the z or total momentum, the same paired version of the scattered electron 4-momenta vector are transfered over from the Moller.
 +
[[Altering Phi Angles]]
  
A program was written to rotate the phi angle as described above.  The changing x and y components for this distribution can be seen with
 
  
<center>[[File:xy.png]]</center>
+
Using two paired 4-momenta vectors in the CM frame, we can rotate them from the "CM-final" state to the "CM-initial" state by having the total momentum of each vector being held only in the z-component as would be expected for two colliding particles (<math>\theta = 0, \phi = 0</math>).  From this, a Lorentz boost can be performed to find the 4-vectors in the Lab frame for an incoming electron or various energies striking a stationary electron.  With the boost vector a second Lorentz boost can be performed from the Final CM Frame to the Final Lab Frame.  In this state, the phi distribution is unaffected by the Lorentz boost (perpendicular to direction of relativistic motion), while the theta angle is transformed.
  
Lastly a LUND file was written that was 643360680 lines in length, which equates to 214453560 entries.  This was divided into 8579 file parts of 75000 each.  The first set from the original data set is shown below.  To make sure the full 2 pi is covered, the rotation starts in the 1st quadrant.
+
10 separate trials were run for 10,000 events each.   
 +
The histograms of Momentum, Angle Theta and Phi for the scattered and Moller electron in both the final lab frame and final CM frame were combined using:
  
<pre>split -a 4 -d -l 75000 Extra_Phi.LUND Phi_Parts_</pre>
+
<pre>hadd -f Total_MakeCM_4e9.root set1/MakeCM_4e9.root set2/MakeCM_4e9.root set3/MakeCM_4e9.root set4/MakeCM_4e9.root set5/MakeCM_4e9.root set6/MakeCM_4e9.root set7/MakeCM_4e9.root set8/MakeCM_4e9.root set9/MakeCM_4e9.root set10/MakeCM_4e9.root</pre>
  
 +
The Phi distribution for the CM and Lab frame.
  
<center>[[File:part1of8579.png]]</center>
 
  
 
+
[[File:MolPhiLab.png]][[File:MolPhiCM.png]]
----
 
[[DV_MollerTrackRecon#Moller_events_No_Solenoid | Back to Recon ]]
 
 
 
==Differential Cross Section==
 
===Variables used in Elastic Scattering===
 
[[Variables Used in Elastic Scattering]]
 
 
 
===Scattering Cross Section===
 
[[Scattering Cross Section]]
 
 
 
===Moller Differential Cross Section===
 
Using the equation from [1]
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ e^4 }{8E^{*2}}\left \{\frac{1+cos^4(\frac{\theta^*}{2})}{sin^4(\frac{\theta^*}{2})}+\frac{1+sin^4(\frac{\theta^*}{2})}{cos^4(\frac{\theta^*}{2})}+\frac{2}{sin^2(\frac{\theta^*}{2})cos^2(\frac{\theta^*}{2})} \right \}</math></center>
 
  
  
 +
Their LUND files were combined using
  
<center><math>where\  \alpha=\frac{e^2}{\hbar c}\quad with\quad \hbar = c =1\ and\  \theta^*=\theta^*_1=\theta^*_2</math></center>
+
<pre>cat set1/Extra_Phi.LUND set2/Extra_Phi.LUND set3/Extra_Phi.LUND set4/Extra_Phi.LUND set5/Extra_Phi.LUND set6/Extra_Phi.LUND set7/Extra_Phi.LUND set8/Extra_Phi.LUND set9/Extra_Phi.LUND set10/Extra_Phi.LUND >Total_Extra_Phi.LUND</pre>
  
 +
resulting in a LUND file that was 13309755 lines in length, which equates to 4436585 entries.  This was divided into 177 file parts of 75000 each.  The first set from the original data set is shown below. 
  
This can be simplified to the form
+
<pre>split -a 4 -d -l 75000 Total_Extra_Phi.LUND Phi_Parts_</pre>
  
  
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 }{4E^{*2}}\frac{ (3+cos^2\theta^*)^2}{sin^4\theta^*}</math></center>
+
<center>[[File:File1of177.png]]</center>
  
Plugging in the values expected for 2 scattering electrons:
+
It was shown earlier that the differential cross section scale is <math>\frac{d\sigma}{d\Omega}\approx 16.2\times 10^{-2}mb=16.2\mu b</math>
  
 +
For an Ammonia target:
 +
:::::<math>\rho_{target}\times l_{target}=\frac{.8 g}{1 cm^3}\times \frac{1 mole}{17 g} \times  \frac{6\times10^{23} atoms}{1 mole} \times \frac{1 cm}{ } \times \frac{10^{-24} cm^2}{barn} =2.82\times 10^{-2} barns</math>
  
  
 +
If the beam had 4E9 incident electrons, the differential cross-section would be found with,
  
<center><math>\alpha ^2=5.3279\times 10^{-5}</math></center>
+
:::::<math>\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^9}=8.87\times 10^{-9} barns=.00887 \mu b</math>
  
 +
Since extra Phi angles have been produced obviously a larger number of incident electrons would be needed.  Looking at the number Moller events are created for 1E6, 1E7, and 4E9 incident electrons, we can estimate the number of incident electrons needed for the number of extra Phi angles produced.
  
<center><math>E^*\approx 106.031 MeV</math></center>
+
{| border=1
 
+
   |+ Moller Events per Incident Electrons
 
 
Using unit analysis on the term outside the parantheses, we find that the differential cross section for an electron at this momentum should be around
 
 
 
<center><math>\frac{5.3279\times 10^{-5}}{4\times 1.124\times 10^{16}eV^2}=1.18\times 10^{-21} eV^{-2}=\frac{1.18\times 10^{-21}}{1eV^2}\times \frac{1\times 10^{18} }{1\times 10^{18}}=\frac{.0012}{GeV^2}</math></center>
 
 
 
Using the conversion of
 
 
 
 
 
<center><math>\frac{1}{1GeV^2}=.3894 mb</math></center>
 
 
 
 
 
 
 
<center><math>\frac{.0012}{1GeV^2}=\frac{.0012}{1}\frac{1}{1GeV^2}=.0012\times .3894 mb=.467\times 10^{-3}mb</math></center>
 
 
 
 
 
 
 
 
 
We find that the differential cross section scale is <math>\frac{d\sigma}{d\Omega}\approx .5\times 10^{-3}mb=.5\mu b</math>
 
 
 
===CM to Lab Frame===
 
We can substitute in for <math>\theta</math>
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 }{4E^{*2}}\frac{ (3+cos^2\theta^*)^2}{sin^4\theta^*}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 }{4E^{*2}}\frac{ (3+cos^2\theta^*)^2}{sin(\theta^*)sin(\theta^*)sin(\theta^*)sin(\theta^*)}</math></center>
 
 
 
 
 
Using,
 
<center><math>sin(\theta^*)=sin(\theta_{2}^*)=\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)</math></center>
 
 
 
 
 
{| class="wikitable" align="center"
 
| style="background: gray"      | <math>\frac{\partial ^2\sigma(E,\, \theta ,\, \phi)}{\partial E\, \partial \Omega} = \frac{\partial ^2\sigma^*(E^*,\, \theta^* ,\, \phi^*)}{\partial E^*\,\partial \Omega^*}\frac{p}{p^{*}}</math>
 
|}
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 }{4E^{*2}}\frac{ (3+cos^2\theta^*)^2}{\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (3+cos^2\theta^*)^2}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
Now, using the trigometric identity,
 
<center><math>sin^2 t+cos^2 t=1\Longrightarrow cos^2(\theta^*)=1-sin^2(\theta^*)</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (3+1-sin^2(\theta^*))^2}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (4-sin(\theta^*)sin(\theta^*))^2}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (4-\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right))^2}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (4-\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right))^2}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
Substituting,
 
<center><math>p_{2}^*=\sqrt{E_{2}^{*2}-m^2}</math></center>
 
 
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 (\sqrt{E_{2}^{*2}-m^2})^4}{4E^{*2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 (E_{2}^{*2}-m^2)^2}{4E^{*2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
Substituting in for m, E<sub>2</sub><sup>*,</sup>and E<sup>*</sup>
 
<math>\alpha^2=5.3279\times 10^{-5}</math>
 
<center><math>\frac{d\sigma}{d\Omega '_1}=(\frac{ 5.3279\times 10^{-5}( ((53.015MeV)^{2}-(.511MeV)^2)^2}{4\times (106.031MeV)^{2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{9.357\times 10^9eV^2}{p_{2}^{'4}}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
===Different p<sub>2</sub><sup>1</sup> Values===
 
 
 
Using the conversion of
 
 
 
 
 
<center><math>\frac{1}{1GeV^2}=.3894 mb</math></center>
 
 
 
 
 
<center><math>\sigma=\int d\sigma=\int \frac{d\sigma}{d\Omega_2'}d\Omega</math></center>
 
 
 
 
 
The range of the detector is considered to be <math> .10 \le \theta \le .87</math>,<math>-\pi \le \phi \le \pi</math>
 
 
 
 
 
<center><math>\sigma=\int_{ .611}^{2.531} \int_{-\pi}^{\pi} \frac{d\sigma}{d\Omega_2'}sin\theta \,d\theta \, d\phi </math></center>
 
 
 
 
 
 
 
<center><math>\sigma=2\pi \int_{.611}^{2.531} \frac{d\sigma}{d\Omega_2'} sin\theta \,d\theta  </math></center>
 
 
 
 
 
 
 
<center><math>\sigma=2\pi (1.638)\frac{d\sigma}{d\Omega_2'} </math></center>
 
 
 
 
 
 
 
<center><math>\sigma=(10.294) \frac{d\sigma}{d\Omega_2'} </math></center>
 
 
 
 
 
{| class="wikitable" align="center" border=1
 
   |+ '''Differential Cross Section Scale for Different p<sub>2</sub><sup>1</sup> Values'''
 
 
|-
 
|-
   ! <math>p_{2}'(MeV)</math>
+
   ! # of Incident Electrons
  ! <math>\frac{d\sigma}{d\Omega_{2}^'}(eV^{-2})</math>
+
   ! # of Moller Events
  ! <math>\frac{d\sigma}{d\Omega_{2}^'}(GeV^{-2})</math>
+
   ! # of E>500MeV
  ! <math>\frac{d\sigma}{d\Omega_{2}^'}(mb)</math>
 
   ! <math>\frac{d\sigma}{d\Omega_{2}^'}(b)</math>
 
   ! <math>\sigma(b)</math>
 
 
|-
 
|-
   | <math>10000</math>
+
   | 1e6
   | <math>9.357\times 10^{-11}</math>
+
   | 38343
   | <math>9.357\times 10^{7}</math>
+
   | 134
  | <math>3.644\times 10^{7}</math>
 
  | <math>3.644\times 10^{4}</math>
 
  | <math>3.751\times 10^{5}</math>
 
 
|-
 
|-
   | <math>5000 </math>
+
   | 1e7
   | <math>3.743\times 10^{-10}</math>
+
   | 383633
   | <math>3.743\times 10^{8}</math>
+
   | 1490
  | <math>1.458\times 10^{8}</math>
 
  | <math>1.458\times 10^{5}</math>
 
  | <math>1.501\times 10^{6}</math>
 
 
|-
 
|-
   | <math>1000 </math>
+
   | 4e9
   | <math>9.357\times 10^{-9}</math>
+
   | 12444898
   | <math>9.357\times 10^{9}</math>
+
   | 48548
  | <math>3.644\times 10^{9}</math>
 
  | <math>3.644\times 10^{6}</math>
 
  |<math>3.751\times 10^{7}</math>
 
|-
 
  | <math>500</math>
 
  | <math>3.743\times 10^{-8}</math>
 
  | <math>3.743\times 10^{10}</math>
 
  | <math>1.458\times 10^{10}</math>
 
  | <math>1.458\times 10^{7}</math>
 
  | <math>1.501\times 10^{8}</math>
 
 
|}
 
|}
  
===Substituting for Moller range and energies===
 
Converting the number of electrons to barns,
 
  
  
<center><math>\frac{d\sigma}{d\Omega_{2}'}=\frac{dN}{\mathcal L d\Omega}</math></center>
+
This shows a trait of providing around 100 Moller electrons of Energy greater that 500 MeV for about 1 million incident electrons of Energy 11 GeV.  Since the boosting of the number of Phi angles leaves around 4431573 Moller electrons with Energy greater than 500 MeV, this would imply around 4e10 incident electrons of Energy 11 GeV.
 +
 
 +
Using the same expression, but this time for 4e10 incident electrons,
 +
 
 +
:::::<math>\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^{10}}=8.87\times 10^{-10} barns=.000887 \mu b</math>
  
 +
Rebining the histogram to account for the unequal weighting of the bins outlined in the table above
  
 +
<pre>TH1F *Combo=new TH1F("TheoryExperiment","Theoretical and Experimental Differential Cross-Section CM Frame",360,90,180);
 +
Combo->Add(MolThetaCM,8.87e-10);
 +
Combo->Draw();
 +
Double_t Bins[16]={90,100,110,120,130,135,140,142,144,146,148,150,152,154,156,180};
 +
hnew=Combo->Rebin(15,"hnew",Bins);
 +
hnew->Draw();
 +
Theory->Draw("same");</pre>
  
  
<center><math>\Longrightarrow dN=\frac{d \sigma}{d \Omega} \mathcal L</math></center>
+
[[File:Extended_DiffXSect_TheoryExperiment.png]]
  
 +
===Running LUND files in GEMC===
  
<center><math>where \mathcal L=i\, \rho I</math></center>
+
Since the LUND file is limited to 75000 lines, the gemc will have to be run in batch mode;
  
 +
Creating a batch directory, with two subdirectories; 1)Phi_Parts, 2)submit.
  
where ρ<sub>target</sub> is the density of the target material, l<sub>target</sub> is the length of the target, and N is the number of incident particles scattered.
 
  
 +
'''1)'''Once the LUND file is broken into 178 parts, they can have the LUND extension added by:
  
<center><math>\mathcal L=\frac{.86g}{1 cm^3}\times \frac{(100cm)^3}{1m^3} \times \frac{1 kg}{1000 g}\times \left[ \left(.75 \frac{1 mole}{1.01 g} \times \frac{1000g}{1 kg} \right)+\left(.25 \frac{1 mole}{14.01 g} \times \frac{1000g}{1 kg} \right)\right] \times \frac{6.022\times10^{23}particles}{1 mole} \times \frac{1cm}{100 cm} \times \frac{1 m}{ } \times \frac{10^{-28} m^2}{barn} </math></center>
+
<pre>prename 's/(Phi_Parts_\d{4})/$1.LUND/' Phi_Parts_*</pre>
  
 +
Placing each of these files into its own directory, within a directory named Phi_Parts
  
 +
<pre>find . -name "*.LUND" -exec sh -c 'mkdir "${1%.*}" ; mv "$1" "${1%.*}" ' _ {} \;</pre>
  
<center><math>\mathcal L=\frac{860kg}{1 m^3}\times \left[ \left(\frac{742.574 mole}{kg} \right)+\left(\frac{17.844 mole}{1 kg} \right)\right] \times \frac{6.022\times 10^{-7}\ particles\cdot m^3}{1 mole\cdot barn} </math></center>
 
  
 +
'''2)'''Creating the submit directory, and using a c++ program, creating the needed 178
  
 +
<pre>#include <iomanip>
 +
#include <sstream>
 +
#include <iostream>
 +
#include <fstream>
  
 +
using namespace std;
  
<center><math>\mathcal L=\frac{5.170\times 10^{-4}kg\cdot particles}{1 mole\cdot barn} \left(\frac{760.418 mole}{kg} \right)</math></center>
+
void submit() {
  
 +
        for(int a=0;a<2;a++)
 +
        {
 +
                for(int b=0;b<10;b++)
 +
                {
 +
                        for(int c=0;c<10;c++)
 +
                        {
 +
                                string filename="submit0";
 +
                                stringstream hundreds;
 +
                                        hundreds << a;
 +
                                stringstream tens;
 +
                                        tens << b;
 +
                                stringstream ones;
 +
                                        ones << c;
 +
                                string fullname="";
 +
                                fullname=filename + hundreds.str() + tens.str() + ones.str();
 +
                        //              cout << fullname << "\n";
 +
                       
 +
                                ofstream myfile;
 +
                                myfile.open(fullname.c_str());
 +
                               
 +
                               
 +
                                myfile << "#!/bin/sh\n";
 +
                                myfile << "#PBS -l nodes=1\n";
 +
                                myfile << "#PBS -A FIAC\n"; 
 +
                                myfile << "#PBS -M vanwdani@isu.edu\n";
 +
                                myfile << "#PBS -m abe\n";
 +
                                myfile << "#\n";
 +
                                myfile << "cd /home/lds/src/CLAS/GEMC\n";
 +
                                myfile << "tcsh\n";
 +
                                myfile << "source setup\n";
 +
                                myfile << "cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh\n";
 +
                                myfile << "cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0";
 +
                                        myfile <<a<<b<<c<<"\n";
 +
                                myfile << "gemc -USE_GUI=0 -Hall_Material=\"Vacuum\" -INPUT_GEN_FILE=\"LUND, Phi_Parts_0";
 +
                                        myfile <<a<<b<<c;
 +
                                        myfile << ".LUND\" -N=75000 eg12.gcard\n";
 +
                                myfile << "~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 ";
 +
                                        myfile << "-config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB\n";
 +
                                myfile << "~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio\n";
 +
                               
 +
                               
 +
                                myfile.close();
 +
                        }
 +
                }
 +
        }
 +
       
 +
}</pre>
 +
 
  
 +
This creates the submitXXXX file
  
<center><math>\mathcal L=\frac{.394\ particles}{1 barn} </math></center>
+
<pre>#!/bin/sh
 +
#PBS -l nodes=1
 +
#PBS -A FIAC
 +
#PBS -M vanwdani@isu.edu
 +
#PBS -m abe
 +
#
 +
cd /home/lds/src/CLAS/GEMC
 +
tcsh
 +
source setup
 +
cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh
 +
cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0000
 +
gemc -USE_GUI=0 -Hall_Material="Vacuum" -INPUT_GEN_FILE="LUND, Phi_Parts_0000.LUND" -N=75000 eg12.gcard
 +
~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 -config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB
 +
~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio
  
 +
</pre>
  
  
<center><math>\Longrightarrow N=\sigma \frac{.394\ particles}{1 barn}</math></center>
+
Creating a file named lds-submit
  
 +
[[File:Screen_Shot_2016-03-15_at_2.36.26_PM.png]]
  
 +
----
 +
[[DV_MollerTrackRecon#Moller_events_No_Solenoid | Back to Recon ]]
  
{| class="wikitable" align="center" border=1
+
==Differential Cross Section==
  |+ '''Number of electrons from Moller electron Momentum'''
+
===Variables used in Elastic Scattering===
|-
+
[[Variables Used in Elastic Scattering]]
  ! <math>p_2^{'}(MeV/c)</math>
 
  ! <math>\sigma(b)</math>
 
  ! <math>Number of electrons</math>
 
|-
 
  | <math>\equiv 10000</math>
 
  | <math>3.751\times 10^{5}</math>
 
  |<math>\approx 1.478\times 10^5</math>
 
|-
 
  | <math>\equiv 5000 </math>
 
  | <math>1.501\times 10^{6}</math>
 
  |<math>\approx5.914\times 10^5</math>
 
|-
 
  | <math>\equiv 1000 </math>
 
  |<math>3.751\times 10^{7}</math>
 
  |<math>\approx 1.478\times 10^7</math>
 
|-
 
  | <math>\equiv 500</math>
 
  | <math>1.501\times 10^{8}</math>
 
  |<math>\approx 5.914\times 10^7</math>
 
|}
 
  
 +
===Scattering Cross Section===
 +
[[Scattering Cross Section]]
  
<center>[[File:Lab_Frame_Moller_DiffX.png]]</center>
+
[[old work]]

Latest revision as of 14:54, 31 March 2016

Phi shifts

gcard

<gcard>

        <detector name="../../../../../clas12/fc/forwardCarriage" factory="TEXT$
        <detector name="../../../../../clas12/dc/dc"            factory="TEXT" $
        <detector name="../../../../../clas12/ec/ec"            factory="TEXT" $
        <detector name="../../../../../clas12/ctof/ctof"            factory="TE$
        <detector name="../../../../../clas12/ftof/ftof"            factory="TE$
        <detector name="../../../../../clas12/htcc/htcc"            factory="TE$
        <detector name="../../../../../clas12/pcal/pcal"            factory="TE$
        <option name="BEAM_P"   value="e-, 6.0*GeV, 30.0*deg, 10*deg"/>
        <option name="SPREAD_P" value="5.5*GeV, 25*deg, 180*deg"/>
        <option name="SCALE_FIELD" value="clas12-torus-big, -1.0"/>
        <option name="HALL_FIELD"  value="clas12-solenoid"/>
        <option name="SCALE_FIELD" value="clas12-solenoid, 1.0"/>
        <option name="OUTPUT" value="evio,eg12.ev"/>

</gcard>

Cross-section

Previous attempts


Calculations of 4-momentum components (Trial 4)

Setup

Since we want to run for a evenly spaced energy range for Moller electrons, we will need to use some of the scattered electrons to help cover this range. A Moller scattering data file of 1E7 events has no Moller electrons with momentum over 5500 MeV. Since momentum is conserved, and the data is verified kinematicly verified, we cannot simply "switch" the data. This data can be altered to have a certain number of different phi values for each energy to match the Moller cross section. This data can then be written to a LUND file, and compared to the previous calculations which did not factor in loss of initial energy.

Prepare Data

Using the existing Moller scattering data from a GEANT simulation of 4E8 incident electrons, a file of just scattered momentum components can be constructed using:

awk '{print $9, $10, $11, $16, $17, $18}' MollerScattering_NH3_Large.dat > Just_Scattered_Momentum.dat

Transfer to CM Frame

Reading in the data from the dat file, we use a C++ program to read the momentum components for the Scattered and Moller electrons into 4-momentum vectors defined as the Lab_final frame of reference.

Performing a Lorentz boost to a Center of Mass frame for the two 4-vectors from the Lab_final frame of reference, we move to a frame where the energies are equal and the momentum are equal but opposite.

Relativistic Kinematics

For Moller Electron energies above 500 MeV, in the Lab frame, histograms of momentum, and theta as well as a 2-D histogram of Energy vs. Theta for the Moller Electron in the CM frame will be filled.

MolEThetaCM 500.png

Using the histogram for Theta in the CM frame, we can determine the relative number of events that occur at a given angle. This information will be used to keep the relative number of particles having the same Theta angle, but multiple Psi angles to evenly cover the detector area

Run for Necessary Amount to match Cross Section

Combo3.png

Using the above plot for the target material, we can find the relative amount that each Theta angle should observe for this process which gives a known Moller differential cross section.


Theta (degrees) Number of events
90 5
100 5
110 6
120 8
130 12
135 20
140 28
142 30
144 40
146 45
148 55
150 70
152 80
154 100

We can set up conditional statements to check what range the Theta angle falls in, then by dividing

[math]\Delta \phi=\frac {2\pi}{number\ of\ events}[/math]

we should find the change in phi needed to give an evenly distributed distribution around the xy plane for a given Theta angle.

UniformPhi.png

Alter Phi Angles

From a C++ program, random Energies and Angle Theta are read from the 2-D histogram created above. Using Relativistic kinematics for CM frame, a 4-momenta vector for the Moller electron is created. Using the properties of the CM frame, a 4-momenta vector for the scattered electron is created. Using the relative counts for number of events at a given angle theta in the CM frame, multiple copies of the Moller CM 4-momenta vector are created. Since the rotation of the angle Phi does not alter the z or total momentum, the same paired version of the scattered electron 4-momenta vector are transfered over from the Moller. Altering Phi Angles


Using two paired 4-momenta vectors in the CM frame, we can rotate them from the "CM-final" state to the "CM-initial" state by having the total momentum of each vector being held only in the z-component as would be expected for two colliding particles ([math]\theta = 0, \phi = 0[/math]). From this, a Lorentz boost can be performed to find the 4-vectors in the Lab frame for an incoming electron or various energies striking a stationary electron. With the boost vector a second Lorentz boost can be performed from the Final CM Frame to the Final Lab Frame. In this state, the phi distribution is unaffected by the Lorentz boost (perpendicular to direction of relativistic motion), while the theta angle is transformed.

10 separate trials were run for 10,000 events each. The histograms of Momentum, Angle Theta and Phi for the scattered and Moller electron in both the final lab frame and final CM frame were combined using:

hadd -f Total_MakeCM_4e9.root set1/MakeCM_4e9.root set2/MakeCM_4e9.root set3/MakeCM_4e9.root set4/MakeCM_4e9.root set5/MakeCM_4e9.root set6/MakeCM_4e9.root set7/MakeCM_4e9.root set8/MakeCM_4e9.root set9/MakeCM_4e9.root set10/MakeCM_4e9.root

The Phi distribution for the CM and Lab frame.


MolPhiLab.pngMolPhiCM.png


Their LUND files were combined using

cat set1/Extra_Phi.LUND set2/Extra_Phi.LUND set3/Extra_Phi.LUND set4/Extra_Phi.LUND set5/Extra_Phi.LUND set6/Extra_Phi.LUND set7/Extra_Phi.LUND set8/Extra_Phi.LUND set9/Extra_Phi.LUND set10/Extra_Phi.LUND >Total_Extra_Phi.LUND

resulting in a LUND file that was 13309755 lines in length, which equates to 4436585 entries. This was divided into 177 file parts of 75000 each. The first set from the original data set is shown below.

split -a 4 -d -l 75000 Total_Extra_Phi.LUND Phi_Parts_


File1of177.png

It was shown earlier that the differential cross section scale is [math]\frac{d\sigma}{d\Omega}\approx 16.2\times 10^{-2}mb=16.2\mu b[/math]

For an Ammonia target:

[math]\rho_{target}\times l_{target}=\frac{.8 g}{1 cm^3}\times \frac{1 mole}{17 g} \times \frac{6\times10^{23} atoms}{1 mole} \times \frac{1 cm}{ } \times \frac{10^{-24} cm^2}{barn} =2.82\times 10^{-2} barns[/math]


If the beam had 4E9 incident electrons, the differential cross-section would be found with,

[math]\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^9}=8.87\times 10^{-9} barns=.00887 \mu b[/math]

Since extra Phi angles have been produced obviously a larger number of incident electrons would be needed. Looking at the number Moller events are created for 1E6, 1E7, and 4E9 incident electrons, we can estimate the number of incident electrons needed for the number of extra Phi angles produced.

Moller Events per Incident Electrons
# of Incident Electrons # of Moller Events # of E>500MeV
1e6 38343 134
1e7 383633 1490
4e9 12444898 48548


This shows a trait of providing around 100 Moller electrons of Energy greater that 500 MeV for about 1 million incident electrons of Energy 11 GeV. Since the boosting of the number of Phi angles leaves around 4431573 Moller electrons with Energy greater than 500 MeV, this would imply around 4e10 incident electrons of Energy 11 GeV.

Using the same expression, but this time for 4e10 incident electrons,

[math]\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^{10}}=8.87\times 10^{-10} barns=.000887 \mu b[/math]

Rebining the histogram to account for the unequal weighting of the bins outlined in the table above

TH1F *Combo=new TH1F("TheoryExperiment","Theoretical and Experimental Differential Cross-Section CM Frame",360,90,180);
Combo->Add(MolThetaCM,8.87e-10);
Combo->Draw();
Double_t Bins[16]={90,100,110,120,130,135,140,142,144,146,148,150,152,154,156,180};
hnew=Combo->Rebin(15,"hnew",Bins);
hnew->Draw();
Theory->Draw("same");


Extended DiffXSect TheoryExperiment.png

Running LUND files in GEMC

Since the LUND file is limited to 75000 lines, the gemc will have to be run in batch mode;

Creating a batch directory, with two subdirectories; 1)Phi_Parts, 2)submit.


1)Once the LUND file is broken into 178 parts, they can have the LUND extension added by:

prename 's/(Phi_Parts_\d{4})/$1.LUND/' Phi_Parts_*

Placing each of these files into its own directory, within a directory named Phi_Parts

find . -name "*.LUND" -exec sh -c 'mkdir "${1%.*}" ; mv "$1" "${1%.*}" ' _ {} \;


2)Creating the submit directory, and using a c++ program, creating the needed 178

#include <iomanip>
#include <sstream>
#include <iostream>
#include <fstream>

using namespace std;

void submit() {

        for(int a=0;a<2;a++)
        {
                for(int b=0;b<10;b++)
                {
                        for(int c=0;c<10;c++)
                        {
                                string filename="submit0";
                                stringstream hundreds;
                                        hundreds << a;
                                stringstream tens;
                                        tens << b;
                                stringstream ones;
                                        ones << c;
                                string fullname="";
                                fullname=filename + hundreds.str() + tens.str() + ones.str();
                        //              cout << fullname << "\n";
                        
                                ofstream myfile;
                                myfile.open(fullname.c_str());
                                
                                
                                myfile << "#!/bin/sh\n";
                                myfile << "#PBS -l nodes=1\n";
                                myfile << "#PBS -A FIAC\n";   
                                myfile << "#PBS -M vanwdani@isu.edu\n";
                                myfile << "#PBS -m abe\n";
                                myfile << "#\n";
                                myfile << "cd /home/lds/src/CLAS/GEMC\n";
                                myfile << "tcsh\n";
                                myfile << "source setup\n";
                                myfile << "cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh\n";
                                myfile << "cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0";
                                        myfile <<a<<b<<c<<"\n";
                                myfile << "gemc -USE_GUI=0 -Hall_Material=\"Vacuum\" -INPUT_GEN_FILE=\"LUND, Phi_Parts_0";
                                        myfile <<a<<b<<c;
                                        myfile << ".LUND\" -N=75000 eg12.gcard\n";
                                myfile << "~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 ";
                                        myfile << "-config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB\n";
                                myfile << "~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio\n";
                                
                                
                                myfile.close();
                        }
                }
        }
         
}


This creates the submitXXXX file

#!/bin/sh
#PBS -l nodes=1
#PBS -A FIAC
#PBS -M vanwdani@isu.edu
#PBS -m abe
#
cd /home/lds/src/CLAS/GEMC
tcsh
source setup
cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh
cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0000
gemc -USE_GUI=0 -Hall_Material="Vacuum" -INPUT_GEN_FILE="LUND, Phi_Parts_0000.LUND" -N=75000 eg12.gcard
~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 -config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB
~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio


Creating a file named lds-submit

Screen Shot 2016-03-15 at 2.36.26 PM.png


Back to Recon

Differential Cross Section

Variables used in Elastic Scattering

Variables Used in Elastic Scattering

Scattering Cross Section

Scattering Cross Section

old work