Difference between revisions of "DV MollerTrackRecon"

From New IAC Wiki
Jump to navigation Jump to search
 
(106 intermediate revisions by the same user not shown)
Line 1: Line 1:
=Moller Lund=
+
=Phi shifts=
  
 +
==gcard==
  
 
LUND file with Moller events (with origin of coordinates occurring at each event)
 
 
<pre>
 
<pre>
2      1      1      1      1      0      0.000563654    3.53715 0      6.2002
+
<gcard>
1 -1 1 11 0 0 0.69 -2.4999 10993.7998 10993.80 0.000511 0 0 0
 
2 -1 1 11 0 0 -0.69 2.4999 6.5852 7.08 0.000511 0 0 0
 
</pre>
 
  
 +
        <detector name="../../../../../clas12/fc/forwardCarriage" factory="TEXT$
 +
        <detector name="../../../../../clas12/dc/dc"            factory="TEXT" $
 +
        <detector name="../../../../../clas12/ec/ec"            factory="TEXT" $
 +
        <detector name="../../../../../clas12/ctof/ctof"            factory="TE$
 +
        <detector name="../../../../../clas12/ftof/ftof"            factory="TE$
 +
        <detector name="../../../../../clas12/htcc/htcc"            factory="TE$
 +
        <detector name="../../../../../clas12/pcal/pcal"            factory="TE$
 +
        <option name="BEAM_P"  value="e-, 6.0*GeV, 30.0*deg, 10*deg"/>
 +
        <option name="SPREAD_P" value="5.5*GeV, 25*deg, 180*deg"/>
 +
        <option name="SCALE_FIELD" value="clas12-torus-big, -1.0"/>
 +
        <option name="HALL_FIELD"  value="clas12-solenoid"/>
 +
        <option name="SCALE_FIELD" value="clas12-solenoid, 1.0"/>
 +
        <option name="OUTPUT" value="evio,eg12.ev"/>
  
From a GEMC run WITH the Solenoid ced is used to obtain the information from the eg12_rec.ev file. 
+
</gcard>
  
      [[File:Event29.png]]
+
</pre>
  
 +
=Cross-section =
 +
[[Previous attempts]]
  
We take the phi angle from the Generated Event momentum as the initial phi angle.  The obtain the final phi angle, we can look at the final position of the electron with in the drift chambers. 
 
  
      [[File:Detector_position.png]]
+
==Calculations of 4-momentum components (Trial 4)==
 +
===Setup===
 +
Since we want to run for a evenly spaced energy range for Moller electrons, we will need to use some of the scattered electrons to help cover this range.  A Moller scattering data file of 1E7 events has no Moller electrons with momentum over 5500 MeV.  Since momentum is conserved, and the data is verified kinematicly verified, we cannot simply "switch" the data.  This data can be altered to have a certain number of different phi values for each energy to match the Moller cross section.  This data can then be written to a LUND file, and compared to the previous calculations which did not factor in loss of initial energy.
  
Examining the position from Timer Based Tracking, we can see that after rotations about first the y-axis, then the z-axis transforms from the detector frame of reference to the lab frame of reference.
+
===Prepare Data===
  
=Euler Angles=
+
Using the existing Moller scattering data from a GEANT simulation of 4E8 incident electrons, a file of just scattered momentum components can be constructed using:
  
We can use the Euler angles to perform the rotations.
+
<pre>
 +
awk '{print $9, $10, $11, $16, $17, $18}' MollerScattering_NH3_Large.dat > Just_Scattered_Momentum.dat
 +
</pre>
  
For the rotation about the y axis.
+
===Transfer to CM Frame===
  
[[File:Euler1.png]]
+
Reading in the data from the dat file, we use a C++ program to read the momentum components for the Scattered and Moller electrons into 4-momentum vectors defined as the Lab_final frame of reference.
  
And the rotation about the z axis.
+
Performing a Lorentz boost to a Center of Mass frame for the two 4-vectors from the Lab_final frame of reference, we move to a frame where the energies are equal and the momentum are equal but opposite.
  
[[File:Euler2.png]]
+
[[Relativistic Kinematics]]
  
=Transformation Matrix=
+
For Moller Electron energies above 500 MeV, in the Lab frame, histograms of momentum, and theta as well as a 2-D histogram of Energy vs. Theta for the Moller Electron in the CM frame will be filled.
  
The Euler angles can be applied using a transformation matrix
+
<center>[[File:MolEThetaCM_500.png]]</center>
  
<math>\left(
+
Using the histogram for Theta in the CM frame, we can determine the relative number of events that occur at a given angleThis information will be used to keep the relative number of particles having the same Theta angle, but multiple Psi angles to evenly cover the detector area
\begin{array}{ccc}
 
\cos (\theta ) & 0 & -\sin (\theta ) \\
 
0 & 1 & 0 \\
 
\sin (\theta ) & 0 & \cos (\theta ) \\
 
\end{array}
 
\right).\left(
 
\begin{array}{c}
 
x \\
 
y \\
 
  z \\
 
\end{array}
 
\right)</math>
 
  
 +
===Run for Necessary Amount to match Cross Section===
 +
<center>[[File:Combo3.png‎]]</center>
  
<math>=\left(
+
Using the above plot for the target material, we can find the relative amount that each Theta angle should observe for this process which gives a [[known Moller differential cross section]].
\begin{array}{c}
 
x \cos (\theta )-z \sin (\theta ) \\
 
y \\
 
z \cos (\theta )+x \sin (\theta ) \\
 
\end{array}
 
\right)</math>
 
  
  
 +
{| class="wikitable" align="center" border=1
 +
|-
 +
! Theta (degrees)
 +
! Number of events
  
 +
|-
 +
| 90
 +
| 5
  
For event #29, in sector 3, the location of the first interaction is given by
+
|-
 +
| 100
 +
| 5
  
[[File:conversions.png]]
+
|-
 +
| 110
 +
| 6
  
 +
|-
 +
| 120
 +
| 8
  
Converting -25 degrees to radians,
+
|-
<math>\theta =-0.436332</math>
+
| 130
which is the rotation the detectors are rotated from the y axis.
+
| 12
  
<math>\left(
+
|-
\begin{array}{ccc}
+
| 135
\cos (\theta ) & 0 & -\sin (\theta ) \\
+
| 20
0 & 1 & 0 \\
 
\sin (\theta ) & 0 & \cos (\theta ) \\
 
\end{array}
 
\right).\left(
 
\begin{array}{c}
 
-15.76 \\
 
0 \\
 
237.43 \\
 
\end{array}
 
\right)</math>
 
  
<math>=\left(
+
|-
\begin{array}{c}
+
| 140
86.0588 \\
+
| 28
0. \\
 
221.845 \\
 
\end{array}
 
\right)</math>
 
  
Finding <math>\phi =\frac{120\ 2 \pi }{360};</math> since "sector -1" =3-1=2*60=120 degrees
+
|-
 +
| 142
 +
| 30
  
<math>\left(
+
|-
\begin{array}{ccc}
+
| 144
\cos (\phi ) & -\sin (\phi ) & 0 \\
+
| 40
\sin (\phi ) & \cos (\phi ) & 0 \\
 
0 & 0 & 1 \\
 
\end{array}
 
\right).\left(
 
\begin{array}{c}
 
86.0588 \\
 
0. \\
 
221.845 \\
 
\end{array}
 
\right)</math>
 
 
 
<math>\left(
 
\begin{array}{c}
 
-43.0294 \\
 
74.5291 \\
 
221.845 \\
 
\end{array}
 
\right)</math>
 
 
 
This shows how the coordinates are transformed and explains the validity of using the TBTracking information to obtain a phi angle in the lab frame.
 
 
 
 
 
 
 
=Phi shifts=
 
 
 
 
 
gcard to generate electrons.
 
 
 
 
 
  <option name="BEAM_P"  value="e-, 6.0*GeV, 30.0*deg, 10*deg">
 
  <option name="SPREAD_P" value="5.5*GeV, 25*deg, 180*deg">
 
 
 
 
 
[[File:Composite_Fields.png]]
 
 
 
 
 
 
 
[[File:GeV_graph.png]]
 
 
 
 
 
[[File:MeV_graph.png]]
 
 
 
 
 
[[File:Total_graph.png]]
 
 
 
=Cross-section =
 
==Calculations of 4-momentum components==
 
 
 
[[DV_Calculations_of_4-momentum_components]]
 
  
==Summary of 4-momentum calculations==
 
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ 0 \ge \phi \ge \frac{-\pi}{2}\ Radians</math>
 
|-
 
| <center>x=POSITIVE</center>
 
 
|-
 
|-
| <center>y=NEGATIVE</center>
+
| 146
|}
+
| 45
  
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ 0 \le \phi \le \frac{\pi}{2}\ Radians</math>
 
 
|-
 
|-
| <center>x=POSITIVE</center>
+
| 148
|-
+
| 55
| <center>y=POSITIVE</center>
 
|}
 
  
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ \frac{-\pi}{2} \ge \phi \ge -\pi\ Radians</math>
 
|-
 
| <center>x=NEGATIVE</center>
 
 
|-
 
|-
| <center>y=NEGATIVE</center>
+
| 150
|}
+
| 70
  
{| class="wikitable" align="center"
 
| style="background: red"      | <math>For\ \frac{\pi}{2} \le \phi \le \pi\ Radians</math>
 
 
|-
 
|-
|<center> x=NEGATIVE</center>
+
| 152
|-
+
| 80
| <center>y=POSITIVE</center>
 
|}
 
 
 
 
 
  
{| class="wikitable" align="center" border=1
 
  |+ '''4 momentum calculations for different frames of reference'''
 
|-
 
  ! Electron Initial Lab Frame
 
  ! Moller electron Initial Lab Frame
 
  ! Moller electron Final Lab Frame
 
  ! Moller electron Center of Mass Frame
 
  ! Electron Center of Mass Frame
 
  ! Electron Final Lab Frame
 
|-
 
  | <math>p_{1}\equiv 11000 MeV</math>
 
  | <math>p_{2}\equiv 0</math>
 
  | <math>p_{2}'\equiv INPUT</math>
 
  | <math>p_{2}^*=\sqrt{E_{2}^{*2}-m^2}</math>
 
  | <math>p_{1}^*=\sqrt{E_{2}^{*2}-m^2}</math>
 
  | <math>p_{1}'=\sqrt{E_{1}^{'\ 2}-m^2}</math>
 
|-
 
  | <math>\theta_{1}\equiv 0</math>
 
  | <math>\theta_{2}\equiv 0</math>
 
  | <math>\theta_{2}'\equiv INPUT</math>
 
  | <math>\theta_{2}^*=\arccos \left(\frac{p_{2(z)}^*}{p_2^*} \right)</math>
 
  | <math>\theta_{1}^*=\pi-\theta_{2}^*</math>
 
  | <math>\theta_{1}'= \arccos \left(\frac{p_{1(z)}'}{p_{1}'} \right)</math>
 
|-
 
  | <math>E_{1}=\sqrt{p_1^2+m^2}</math>
 
  | <math>E_{2}\equiv m</math>
 
  | <math>E_{2}'=\sqrt{p_{2}^{'\ 2}+m^2}</math>
 
  | <math>E_{2}^*=\sqrt{\frac{m(m+E_1)}{2}}</math>
 
  | <math>E_{1}^*=\sqrt{\frac{m(m+E_1)}{2}}</math>
 
  | <math>E_{1}'\equiv E'-E_{2}'</math>
 
|-
 
  | <math>p_{1(x)}\equiv 0</math>
 
  | <math>p_{2(x)}\equiv 0</math>
 
  | <math>p_{2(x)}'=\sqrt{p_{2}^{'\ 2}-p_{2(z)}^{'\ 2}} cos(\phi '_2)</math>
 
  | <math>p_{2(x)}^*\equiv p_{2(x)}'</math>
 
  | <math>p_{1(x)}^*\equiv-p_{2(x)}^*</math>
 
  | <math>p_{1(x)}'\equiv p_{1(x)}^*</math>
 
 
|-
 
|-
  | <math>p_{1(y)}\equiv 0</math>
+
| 154
  | <math>p_{2(y)}\equiv 0</math>
+
| 100
  | <math>p_{2(y)}'=\sqrt{p_{2}^{'\ 2}-p_{2(x)}^{'\ 2}-p_{2(z)}^{'\ 2}}</math>
 
  | <math>p_{2(y)}^*\equiv p_{2(y)}'</math>
 
  | <math>p_{1(y)}^*\equiv -p_{2(y)}^*</math>
 
  | <math>p_{1(y)}'\equiv p_{2(y)}^*</math>
 
|-
 
  | <math>p_{1(z)}\equiv p_1</math>
 
  | <math>p_{2(z)}\equiv 0</math>
 
  | <math>p_{2(z)}'\equiv p_{2}'\ cos(\theta'_2)</math>
 
  | <math>p_{2(z)}^*=-\sqrt{p_{2}^{*\ 2}-p_{2(x)}^{*\ 2}-p_{2(y)}^{*\ 2}}</math>
 
  | <math>p_{1(z)}^*\equiv -p_{2(z)}^*</math>
 
  | <math>p_{1(z)}'=\sqrt{p_{1}^{'\ 2}-p_{(1(x)}^{'\ 2}-p_{1(y)}^{'\ 2}}</math>
 
 
|}
 
|}
  
Verifying that the kinematics are valid, the Moller momentum from GEANT simulations are extracted using
+
We can set up conditional statements to check what range the Theta angle falls in, then by dividing
<center><pre>
 
awk '{print $16, $17, $18}' MollerScattering_NH3_Large.dat > Just_Mol_Mom.dat
 
</pre></center>
 
 
 
Then using the kinematics equations displayed above, used to reverse calculate the scattered electron's momentum and angles.  The root histograms of an incoming 11GeV electron (in blue) are overlaid with the relativistic calculations starting with the Moller electron (Reverse Moller in red) and show good agreement.
 
 
 
 
<center>[[File:FnlMom_backwards.png]][[File:MolMom_reverse.png]]</center>
 
 
 
 
 
 
 
<center>[[File:FnlTheta_reverse.png]][[File:MolTheta_reverse.png]]</center>
 
 
 
 
 
 
 
<center>[[File:FnlMomCM_reverse.png]][[File:MolMomCM_reverse.png]]</center>
 
 
 
The differences in these plots come from the way the CM frame momentum is calculated.
 
 
 
For the process starting with the Moller electron's momentum and working backwards to find the scattered electron:
 
 
 
<center><math>\left( \begin{matrix} E^*_{1}+E^*_{2} \\ p^*_{1(x)}+p^*_{2(x)} \\ p^*_{1(y)}+p^*_{2(y)} \\ p^*_{1(z)}+p^*_{2(z)}\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}+E_{2}\\ 0 \\ 0 \\ p_{1(z)}+p_{2(z)}\end{matrix} \right)</math></center>
 
 
 
 
 
For the process using the scattered electron and Moller electron's momentum to find the CM frame:
 
 
 
 
 
<center><math>\left( \begin{matrix} E^*_{1}+E^*_{2} \\ p^*_{1(x)}+p^*_{2(x)} \\ p^*_{1(y)}+p^*_{2(y)} \\ p^*_{1(z)}+p^*_{2(z)}\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^* \gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E_{1}+E_{2}\\ 0 \\ 0 \\ p_{1(z)}+p_{2(z)}\end{matrix} \right)</math></center>
 
 
 
 
 
<center>[[File:FnlThetaCM_reverse.png]][[File:MolThetaCM_reverse.png]]</center>
 
 
 
==Differential Cross Section==
 
===Moller Differential Cross Section===
 
Using the equation from [1]
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ e^4 }{8E^{*2}}\left \{\frac{1+cos^4(\frac{\theta^*}{2})}{sin^4(\frac{\theta^*}{2})}+\frac{1+sin^4(\frac{\theta^*}{2})}{cos^4(\frac{\theta^*}{2})}+\frac{2}{sin^2(\frac{\theta^*}{2})cos^2(\frac{\theta^*}{2})} \right \}</math></center>
 
  
 +
<center><math>\Delta \phi=\frac {2\pi}{number\ of\ events}</math></center>
  
 +
we should find the change in phi needed to give an evenly distributed distribution around the xy plane for a given Theta angle.
  
<center><math>where\  \alpha=\frac{e^2}{\hbar c}\quad with\quad \hbar = c =1\ and\  \theta^*=\theta^*_1=\theta^*_2</math></center>
+
<center>[[File:UniformPhi.png]]</center>
  
 +
===Alter Phi Angles===
  
This can be simplified to the form
+
From a C++ program, random Energies and Angle Theta are read from the 2-D histogram created above.  Using Relativistic kinematics for CM frame, a 4-momenta vector for the Moller electron is created.  Using the properties of the CM frame, a 4-momenta vector for the scattered electron is created.  Using the relative counts for number of events at a given angle theta in the CM frame, multiple copies of the Moller CM 4-momenta vector are created.  Since the rotation of the angle Phi does not alter the z or total momentum, the same paired version of the scattered electron 4-momenta vector are transfered over from the Moller.
 +
[[Altering Phi Angles]]
  
  
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 }{4E^{*2}}\frac{ (3+cos^2\theta^*)^2}{sin^4\theta^*}</math></center>
+
Using two paired 4-momenta vectors in the CM frame, we can rotate them from the "CM-final" state to the "CM-initial" state by having the total momentum of each vector being held only in the z-component as would be expected for two colliding particles (<math>\theta = 0, \phi = 0</math>).  From this, a Lorentz boost can be performed to find the 4-vectors in the Lab frame for an incoming electron or various energies striking a stationary electron.  With the boost vector a second Lorentz boost can be performed from the Final CM Frame to the Final Lab Frame.  In this state, the phi distribution is unaffected by the Lorentz boost (perpendicular to direction of relativistic motion), while the theta angle is transformed.
  
Plugging in the values expected for 2 scattering electrons:
+
10 separate trials were run for 10,000 events each. 
 +
The histograms of Momentum, Angle Theta and Phi for the scattered and Moller electron in both the final lab frame and final CM frame were combined using:
  
 +
<pre>hadd -f Total_MakeCM_4e9.root set1/MakeCM_4e9.root set2/MakeCM_4e9.root set3/MakeCM_4e9.root set4/MakeCM_4e9.root set5/MakeCM_4e9.root set6/MakeCM_4e9.root set7/MakeCM_4e9.root set8/MakeCM_4e9.root set9/MakeCM_4e9.root set10/MakeCM_4e9.root</pre>
  
 +
The Phi distribution for the CM and Lab frame.
  
  
<center><math>\alpha ^2=5.3279\times 10^{-5}</math></center>
+
[[File:MolPhiLab.png]][[File:MolPhiCM.png]]
  
  
<center><math>E^*\approx 106.031 MeV</math></center>
+
Their LUND files were combined using
  
 +
<pre>cat set1/Extra_Phi.LUND set2/Extra_Phi.LUND set3/Extra_Phi.LUND set4/Extra_Phi.LUND set5/Extra_Phi.LUND set6/Extra_Phi.LUND set7/Extra_Phi.LUND set8/Extra_Phi.LUND set9/Extra_Phi.LUND set10/Extra_Phi.LUND >Total_Extra_Phi.LUND</pre>
  
Using unit analysis on the term outside the parantheses, we find that the differential cross section for an electron at this momentum should be around
+
resulting in a LUND file that was 13309755 lines in length, which equates to 4436585 entries.  This was divided into 177 file parts of 75000 each.  The first set from the original data set is shown below. 
  
<center><math>\frac{5.3279\times 10^{-5}}{4\times 1.124\times 10^{16}eV^2}=1.18\times 10^{-21} eV^{-2}=\frac{1.18\times 10^{-21}}{1eV^2}\times \frac{1\times 10^{18} }{1\times 10^{18}}=\frac{.0012}{GeV^2}</math></center>
+
<pre>split -a 4 -d -l 75000 Total_Extra_Phi.LUND Phi_Parts_</pre>
  
Using the conversion of
 
  
 +
<center>[[File:File1of177.png]]</center>
  
<center><math>\frac{1}{1GeV^2}=.3894 mb</math></center>
+
It was shown earlier that the differential cross section scale is <math>\frac{d\sigma}{d\Omega}\approx 16.2\times 10^{-2}mb=16.2\mu b</math>
  
 +
For an Ammonia target:
 +
:::::<math>\rho_{target}\times l_{target}=\frac{.8 g}{1 cm^3}\times \frac{1 mole}{17 g} \times  \frac{6\times10^{23} atoms}{1 mole} \times \frac{1 cm}{ } \times \frac{10^{-24} cm^2}{barn} =2.82\times 10^{-2} barns</math>
  
  
<center><math>\frac{.0012}{1GeV^2}=\frac{.0012}{1}\frac{1}{1GeV^2}=.0012\times .3894 mb=.467\times 10^{-3}mb</math></center>
+
If the beam had 4E9 incident electrons, the differential cross-section would be found with,
  
 +
:::::<math>\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^9}=8.87\times 10^{-9} barns=.00887 \mu b</math>
  
 +
Since extra Phi angles have been produced obviously a larger number of incident electrons would be needed.  Looking at the number Moller events are created for 1E6, 1E7, and 4E9 incident electrons, we can estimate the number of incident electrons needed for the number of extra Phi angles produced.
  
 
+
{| border=1
We find that the differential cross section scale is <math>\frac{d\sigma}{d\Omega}\approx .5\times 10^{-3}mb=.5\mu b</math>
+
   |+ Moller Events per Incident Electrons
 
 
 
 
===CM to Lab Frame===
 
We can substitute in for <math>\theta</math>
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 }{4E^{*2}}\frac{ (3+cos^2\theta^*)^2}{sin^4\theta^*}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 }{4E^{*2}}\frac{ (3+cos^2\theta^*)^2}{sin(\theta^*)sin(\theta^*)sin(\theta^*)sin(\theta^*)}</math></center>
 
 
 
 
 
Using,
 
<center><math>sin(\theta^*)=sin(\theta_{2}^*)=\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)</math></center>
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 }{4E^{*2}}\frac{ (3+cos^2\theta^*)^2}{\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (3+cos^2\theta^*)^2}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
Now, using the trigometric identity,
 
<center><math>sin^2 t+cos^2 t=1\Longrightarrow cos^2(\theta^*)=1-sin^2(\theta^*)</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (3+1-sin^2(\theta^*))^2}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (4-sin(\theta^*)sin(\theta^*))^2}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (4-\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right)\frac{p_{2}'}{p_{2}^*}\ sin \left( \theta_{2}'\right))^2}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (4-\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right))^2}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 p_{2}^{*4}}{4E^{*2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
Substituting,
 
<center><math>p_{2}^*=\sqrt{E_{2}^{*2}-m^2}</math></center>
 
 
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 (\sqrt{E_{2}^{*2}-m^2})^4}{4E^{*2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{ \alpha^2 (E_{2}^{*2}-m^2)^2}{4E^{*2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
Substituting in for m, E<sub>2</sub><sup>*,</sup>and E<sup>*</sup>
 
<math>\alpha^2=5.3279\times 10^{-5}</math>
 
<center><math>\frac{d\sigma}{d\Omega '_1}=(\frac{ 5.3279\times 10^{-5}( ((53.015MeV)^{2}-(.511MeV)^2)^2}{4\times (106.031MeV)^{2}p_{2}'^4}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega '_1}=\frac{9.357\times 10^9eV^2}{p_{2}^{'4}}\frac{ (16-8\frac{p_{2}^{'2}}{p_{2}^{*2}}\ sin^2 \left( \theta_{2}'\right)+\frac{p_{2}^{'4}}{p_{2}^{*4}}\ sin^4 \left( \theta_{2}'\right))}{sin^4 \left( \theta_{2}'\right)}</math></center>
 
 
 
===Different p<sub>2</sub><sup>1</sup> Values===
 
 
 
Using the conversion of
 
 
 
 
 
<center><math>\frac{1}{1GeV^2}=.3894 mb</math></center>
 
 
 
 
 
<center><math>\sigma=\int d\sigma=\int \frac{d\sigma}{d\Omega_2'}d\Omega</math></center>
 
 
 
 
 
The range of the detector is considered to be <math> .10 \le \theta \le .87</math>,<math>-\pi \le \phi \le \pi</math>
 
 
 
 
 
<center><math>\sigma=\int_{ .611}^{2.531} \int_{-\pi}^{\pi} \frac{d\sigma}{d\Omega_2'}sin\theta \,d\theta \, d\phi </math></center>
 
 
 
 
 
 
 
<center><math>\sigma=2\pi \int_{.611}^{2.531} \frac{d\sigma}{d\Omega_2'} sin\theta \,d\theta  </math></center>
 
 
 
 
 
 
 
<center><math>\sigma=2\pi (1.638)\frac{d\sigma}{d\Omega_2'} </math></center>
 
 
 
 
 
 
 
<center><math>\sigma=(10.294) \frac{d\sigma}{d\Omega_2'} </math></center>
 
 
 
 
 
{| class="wikitable" align="center" border=1
 
   |+ '''Differential Cross Section Scale for Different p<sub>2</sub><sup>1</sup> Values'''
 
 
|-
 
|-
   ! <math>p_{2}'(MeV)</math>
+
   ! # of Incident Electrons
  ! <math>\frac{d\sigma}{d\Omega_{2}^'}(eV^{-2})</math>
+
   ! # of Moller Events
  ! <math>\frac{d\sigma}{d\Omega_{2}^'}(GeV^{-2})</math>
+
   ! # of E>500MeV
  ! <math>\frac{d\sigma}{d\Omega_{2}^'}(mb)</math>
 
   ! <math>\frac{d\sigma}{d\Omega_{2}^'}(b)</math>
 
   ! <math>\sigma(b)</math>
 
 
|-
 
|-
   | <math>10000</math>
+
   | 1e6
   | <math>9.357\times 10^{-11}</math>
+
   | 38343
   | <math>9.357\times 10^{7}</math>
+
   | 134
  | <math>3.644\times 10^{7}</math>
 
  | <math>3.644\times 10^{4}</math>
 
  | <math>3.751\times 10^{5}</math>
 
 
|-
 
|-
   | <math>5000 </math>
+
   | 1e7
   | <math>3.743\times 10^{-10}</math>
+
   | 383633
   | <math>3.743\times 10^{8}</math>
+
   | 1490
  | <math>1.458\times 10^{8}</math>
 
  | <math>1.458\times 10^{5}</math>
 
  | <math>1.501\times 10^{6}</math>
 
 
|-
 
|-
   | <math>1000 </math>
+
   | 4e9
   | <math>9.357\times 10^{-9}</math>
+
   | 12444898
   | <math>9.357\times 10^{9}</math>
+
   | 48548
  | <math>3.644\times 10^{9}</math>
 
  | <math>3.644\times 10^{6}</math>
 
  |<math>3.751\times 10^{7}</math>
 
|-
 
  | <math>500</math>
 
  | <math>3.743\times 10^{-8}</math>
 
  | <math>3.743\times 10^{10}</math>
 
  | <math>1.458\times 10^{10}</math>
 
  | <math>1.458\times 10^{7}</math>
 
  | <math>1.501\times 10^{8}</math>
 
 
|}
 
|}
  
===Substituting for Moller range and energies===
 
Converting the number of electrons to barns,
 
  
  
<center><math>\frac{d\sigma}{d\Omega_{2}'}=\frac{dN}{\mathcal L d\Omega}</math></center>
+
This shows a trait of providing around 100 Moller electrons of Energy greater that 500 MeV for about 1 million incident electrons of Energy 11 GeV.  Since the boosting of the number of Phi angles leaves around 4431573 Moller electrons with Energy greater than 500 MeV, this would imply around 4e10 incident electrons of Energy 11 GeV.
  
 +
Using the same expression, but this time for 4e10 incident electrons,
  
 +
:::::<math>\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^{10}}=8.87\times 10^{-10} barns=.000887 \mu b</math>
  
<center><math>\mathcal L=\Phi \rho l</math></center>
+
Rebining the histogram to account for the unequal weighting of the bins outlined in the table above
  
 +
<pre>TH1F *Combo=new TH1F("TheoryExperiment","Theoretical and Experimental Differential Cross-Section CM Frame",360,90,180);
 +
Combo->Add(MolThetaCM,8.87e-10);
 +
Combo->Draw();
 +
Double_t Bins[16]={90,100,110,120,130,135,140,142,144,146,148,150,152,154,156,180};
 +
hnew=Combo->Rebin(15,"hnew",Bins);
 +
hnew->Draw();
 +
Theory->Draw("same");</pre>
  
  
<center><math>\Longrightarrow N=\sigma \Phi \rho l</math></center>
+
[[File:Extended_DiffXSect_TheoryExperiment.png]]
  
 +
===Running LUND files in GEMC===
  
 +
Since the LUND file is limited to 75000 lines, the gemc will have to be run in batch mode;
  
 +
Creating a batch directory, with two subdirectories; 1)Phi_Parts, 2)submit.
  
  
where ρ<sub>target</sub> is the density of the target material, l<sub>target</sub> is the length of the target, and N is the number of incident particles scattered.
+
'''1)'''Once the LUND file is broken into 178 parts, they can have the LUND extension added by:
  
 +
<pre>prename 's/(Phi_Parts_\d{4})/$1.LUND/' Phi_Parts_*</pre>
  
<center><math>\mathcal L=\frac{.86g}{1 cm^3}\times \frac{(100cm)^3}{1m^3} \times \frac{1 kg}{1000 g}\times \left[ \left(.75 \frac{1 mole}{1.01 g} \times \frac{1000g}{1 kg} \right)+\left(.25 \frac{1 mole}{14.01 g} \times \frac{1000g}{1 kg} \right)\right] \times \frac{6.022\times10^{23}particles}{1 mole} \times \frac{1cm}{100 cm} \times \frac{1 m}{ } \times \frac{10^{-28} m^2}{barn} </math></center>
+
Placing each of these files into its own directory, within a directory named Phi_Parts
  
 +
<pre>find . -name "*.LUND" -exec sh -c 'mkdir "${1%.*}" ; mv "$1" "${1%.*}" ' _ {} \;</pre>
  
  
<center><math>\mathcal L=\frac{860kg}{1 m^3}\times \left[ \left(\frac{742.574 mole}{kg} \right)+\left(\frac{17.844 mole}{1 kg} \right)\right] \times \frac{6.022\times 10^{-7}\ particles\cdot m^3}{1 mole\cdot barn} </math></center>
+
'''2)'''Creating the submit directory, and using a c++ program, creating the needed 178
  
 +
<pre>#include <iomanip>
 +
#include <sstream>
 +
#include <iostream>
 +
#include <fstream>
  
 +
using namespace std;
  
 +
void submit() {
  
<center><math>\mathcal L=\frac{5.170\times 10^{-4}kg\cdot particles}{1 mole\cdot barn} \left(\frac{760.418 mole}{kg} \right)</math></center>
+
        for(int a=0;a<2;a++)
 +
        {
 +
                for(int b=0;b<10;b++)
 +
                {
 +
                        for(int c=0;c<10;c++)
 +
                        {
 +
                                string filename="submit0";
 +
                                stringstream hundreds;
 +
                                        hundreds << a;
 +
                                stringstream tens;
 +
                                        tens << b;
 +
                                stringstream ones;
 +
                                        ones << c;
 +
                                string fullname="";
 +
                                fullname=filename + hundreds.str() + tens.str() + ones.str();
 +
                        //              cout << fullname << "\n";
 +
                       
 +
                                ofstream myfile;
 +
                                myfile.open(fullname.c_str());
 +
                               
 +
                               
 +
                                myfile << "#!/bin/sh\n";
 +
                                myfile << "#PBS -l nodes=1\n";
 +
                                myfile << "#PBS -A FIAC\n"; 
 +
                                myfile << "#PBS -M vanwdani@isu.edu\n";
 +
                                myfile << "#PBS -m abe\n";
 +
                                myfile << "#\n";
 +
                                myfile << "cd /home/lds/src/CLAS/GEMC\n";
 +
                                myfile << "tcsh\n";
 +
                                myfile << "source setup\n";
 +
                                myfile << "cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh\n";
 +
                                myfile << "cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0";
 +
                                        myfile <<a<<b<<c<<"\n";
 +
                                myfile << "gemc -USE_GUI=0 -Hall_Material=\"Vacuum\" -INPUT_GEN_FILE=\"LUND, Phi_Parts_0";
 +
                                        myfile <<a<<b<<c;
 +
                                        myfile << ".LUND\" -N=75000 eg12.gcard\n";
 +
                                myfile << "~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 ";
 +
                                        myfile << "-config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB\n";
 +
                                myfile << "~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio\n";
 +
                               
 +
                               
 +
                                myfile.close();
 +
                        }
 +
                }
 +
        }
 +
       
 +
}</pre>
 +
 
  
 +
This creates the submitXXXX file
  
 +
<pre>#!/bin/sh
 +
#PBS -l nodes=1
 +
#PBS -A FIAC
 +
#PBS -M vanwdani@isu.edu
 +
#PBS -m abe
 +
#
 +
cd /home/lds/src/CLAS/GEMC
 +
tcsh
 +
source setup
 +
cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh
 +
cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0000
 +
gemc -USE_GUI=0 -Hall_Material="Vacuum" -INPUT_GEN_FILE="LUND, Phi_Parts_0000.LUND" -N=75000 eg12.gcard
 +
~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 -config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB
 +
~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio
  
<center><math>\mathcal L=\frac{.394\ particles}{1 barn} </math></center>
+
</pre>
  
  
 +
Creating a file named lds-submit
  
<center><math>\Longrightarrow N=\sigma \frac{.394\ particles}{1 barn}</math></center>
+
[[File:Screen_Shot_2016-03-15_at_2.36.26_PM.png]]
  
 +
----
 +
[[DV_MollerTrackRecon#Moller_events_No_Solenoid | Back to Recon ]]
  
 +
==Differential Cross Section==
 +
===Variables used in Elastic Scattering===
 +
[[Variables Used in Elastic Scattering]]
  
{| class="wikitable" align="center" border=1
+
===Scattering Cross Section===
  |+ '''Number of electrons from Moller electron Momentum'''
+
[[Scattering Cross Section]]
|-
 
  ! <math>p_2^{'}(MeV/c)</math>
 
  ! <math>\sigma(b)</math>
 
  ! <math>Number of electrons</math>
 
|-
 
  | <math>\equiv 10000</math>
 
  | <math>3.751\times 10^{5}</math>
 
  |<math>\approx 1.478\times 10^5</math>
 
|-
 
  | <math>\equiv 5000 </math>
 
  | <math>1.501\times 10^{6}</math>
 
  |<math>\approx5.914\times 10^5</math>
 
|-
 
  | <math>\equiv 1000 </math>
 
  |<math>3.751\times 10^{7}</math>
 
  |<math>\approx 1.478\times 10^7</math>
 
|-
 
  | <math>\equiv 500</math>
 
  | <math>1.501\times 10^{8}</math>
 
  |<math>\approx 5.914\times 10^7</math>
 
|}
 
 
 
  
<center>[[File:Lab_Frame_Moller_DiffX.png]]</center>
+
[[old work]]

Latest revision as of 14:54, 31 March 2016

Phi shifts

gcard

<gcard>

        <detector name="../../../../../clas12/fc/forwardCarriage" factory="TEXT$
        <detector name="../../../../../clas12/dc/dc"            factory="TEXT" $
        <detector name="../../../../../clas12/ec/ec"            factory="TEXT" $
        <detector name="../../../../../clas12/ctof/ctof"            factory="TE$
        <detector name="../../../../../clas12/ftof/ftof"            factory="TE$
        <detector name="../../../../../clas12/htcc/htcc"            factory="TE$
        <detector name="../../../../../clas12/pcal/pcal"            factory="TE$
        <option name="BEAM_P"   value="e-, 6.0*GeV, 30.0*deg, 10*deg"/>
        <option name="SPREAD_P" value="5.5*GeV, 25*deg, 180*deg"/>
        <option name="SCALE_FIELD" value="clas12-torus-big, -1.0"/>
        <option name="HALL_FIELD"  value="clas12-solenoid"/>
        <option name="SCALE_FIELD" value="clas12-solenoid, 1.0"/>
        <option name="OUTPUT" value="evio,eg12.ev"/>

</gcard>

Cross-section

Previous attempts


Calculations of 4-momentum components (Trial 4)

Setup

Since we want to run for a evenly spaced energy range for Moller electrons, we will need to use some of the scattered electrons to help cover this range. A Moller scattering data file of 1E7 events has no Moller electrons with momentum over 5500 MeV. Since momentum is conserved, and the data is verified kinematicly verified, we cannot simply "switch" the data. This data can be altered to have a certain number of different phi values for each energy to match the Moller cross section. This data can then be written to a LUND file, and compared to the previous calculations which did not factor in loss of initial energy.

Prepare Data

Using the existing Moller scattering data from a GEANT simulation of 4E8 incident electrons, a file of just scattered momentum components can be constructed using:

awk '{print $9, $10, $11, $16, $17, $18}' MollerScattering_NH3_Large.dat > Just_Scattered_Momentum.dat

Transfer to CM Frame

Reading in the data from the dat file, we use a C++ program to read the momentum components for the Scattered and Moller electrons into 4-momentum vectors defined as the Lab_final frame of reference.

Performing a Lorentz boost to a Center of Mass frame for the two 4-vectors from the Lab_final frame of reference, we move to a frame where the energies are equal and the momentum are equal but opposite.

Relativistic Kinematics

For Moller Electron energies above 500 MeV, in the Lab frame, histograms of momentum, and theta as well as a 2-D histogram of Energy vs. Theta for the Moller Electron in the CM frame will be filled.

MolEThetaCM 500.png

Using the histogram for Theta in the CM frame, we can determine the relative number of events that occur at a given angle. This information will be used to keep the relative number of particles having the same Theta angle, but multiple Psi angles to evenly cover the detector area

Run for Necessary Amount to match Cross Section

Combo3.png

Using the above plot for the target material, we can find the relative amount that each Theta angle should observe for this process which gives a known Moller differential cross section.


Theta (degrees) Number of events
90 5
100 5
110 6
120 8
130 12
135 20
140 28
142 30
144 40
146 45
148 55
150 70
152 80
154 100

We can set up conditional statements to check what range the Theta angle falls in, then by dividing

[math]\Delta \phi=\frac {2\pi}{number\ of\ events}[/math]

we should find the change in phi needed to give an evenly distributed distribution around the xy plane for a given Theta angle.

UniformPhi.png

Alter Phi Angles

From a C++ program, random Energies and Angle Theta are read from the 2-D histogram created above. Using Relativistic kinematics for CM frame, a 4-momenta vector for the Moller electron is created. Using the properties of the CM frame, a 4-momenta vector for the scattered electron is created. Using the relative counts for number of events at a given angle theta in the CM frame, multiple copies of the Moller CM 4-momenta vector are created. Since the rotation of the angle Phi does not alter the z or total momentum, the same paired version of the scattered electron 4-momenta vector are transfered over from the Moller. Altering Phi Angles


Using two paired 4-momenta vectors in the CM frame, we can rotate them from the "CM-final" state to the "CM-initial" state by having the total momentum of each vector being held only in the z-component as would be expected for two colliding particles ([math]\theta = 0, \phi = 0[/math]). From this, a Lorentz boost can be performed to find the 4-vectors in the Lab frame for an incoming electron or various energies striking a stationary electron. With the boost vector a second Lorentz boost can be performed from the Final CM Frame to the Final Lab Frame. In this state, the phi distribution is unaffected by the Lorentz boost (perpendicular to direction of relativistic motion), while the theta angle is transformed.

10 separate trials were run for 10,000 events each. The histograms of Momentum, Angle Theta and Phi for the scattered and Moller electron in both the final lab frame and final CM frame were combined using:

hadd -f Total_MakeCM_4e9.root set1/MakeCM_4e9.root set2/MakeCM_4e9.root set3/MakeCM_4e9.root set4/MakeCM_4e9.root set5/MakeCM_4e9.root set6/MakeCM_4e9.root set7/MakeCM_4e9.root set8/MakeCM_4e9.root set9/MakeCM_4e9.root set10/MakeCM_4e9.root

The Phi distribution for the CM and Lab frame.


MolPhiLab.pngMolPhiCM.png


Their LUND files were combined using

cat set1/Extra_Phi.LUND set2/Extra_Phi.LUND set3/Extra_Phi.LUND set4/Extra_Phi.LUND set5/Extra_Phi.LUND set6/Extra_Phi.LUND set7/Extra_Phi.LUND set8/Extra_Phi.LUND set9/Extra_Phi.LUND set10/Extra_Phi.LUND >Total_Extra_Phi.LUND

resulting in a LUND file that was 13309755 lines in length, which equates to 4436585 entries. This was divided into 177 file parts of 75000 each. The first set from the original data set is shown below.

split -a 4 -d -l 75000 Total_Extra_Phi.LUND Phi_Parts_


File1of177.png

It was shown earlier that the differential cross section scale is [math]\frac{d\sigma}{d\Omega}\approx 16.2\times 10^{-2}mb=16.2\mu b[/math]

For an Ammonia target:

[math]\rho_{target}\times l_{target}=\frac{.8 g}{1 cm^3}\times \frac{1 mole}{17 g} \times \frac{6\times10^{23} atoms}{1 mole} \times \frac{1 cm}{ } \times \frac{10^{-24} cm^2}{barn} =2.82\times 10^{-2} barns[/math]


If the beam had 4E9 incident electrons, the differential cross-section would be found with,

[math]\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^9}=8.87\times 10^{-9} barns=.00887 \mu b[/math]

Since extra Phi angles have been produced obviously a larger number of incident electrons would be needed. Looking at the number Moller events are created for 1E6, 1E7, and 4E9 incident electrons, we can estimate the number of incident electrons needed for the number of extra Phi angles produced.

Moller Events per Incident Electrons
# of Incident Electrons # of Moller Events # of E>500MeV
1e6 38343 134
1e7 383633 1490
4e9 12444898 48548


This shows a trait of providing around 100 Moller electrons of Energy greater that 500 MeV for about 1 million incident electrons of Energy 11 GeV. Since the boosting of the number of Phi angles leaves around 4431573 Moller electrons with Energy greater than 500 MeV, this would imply around 4e10 incident electrons of Energy 11 GeV.

Using the same expression, but this time for 4e10 incident electrons,

[math]\frac{1}{\rho_{target}\times l_{target} \times 4\times 10^{10}}=8.87\times 10^{-10} barns=.000887 \mu b[/math]

Rebining the histogram to account for the unequal weighting of the bins outlined in the table above

TH1F *Combo=new TH1F("TheoryExperiment","Theoretical and Experimental Differential Cross-Section CM Frame",360,90,180);
Combo->Add(MolThetaCM,8.87e-10);
Combo->Draw();
Double_t Bins[16]={90,100,110,120,130,135,140,142,144,146,148,150,152,154,156,180};
hnew=Combo->Rebin(15,"hnew",Bins);
hnew->Draw();
Theory->Draw("same");


Extended DiffXSect TheoryExperiment.png

Running LUND files in GEMC

Since the LUND file is limited to 75000 lines, the gemc will have to be run in batch mode;

Creating a batch directory, with two subdirectories; 1)Phi_Parts, 2)submit.


1)Once the LUND file is broken into 178 parts, they can have the LUND extension added by:

prename 's/(Phi_Parts_\d{4})/$1.LUND/' Phi_Parts_*

Placing each of these files into its own directory, within a directory named Phi_Parts

find . -name "*.LUND" -exec sh -c 'mkdir "${1%.*}" ; mv "$1" "${1%.*}" ' _ {} \;


2)Creating the submit directory, and using a c++ program, creating the needed 178

#include <iomanip>
#include <sstream>
#include <iostream>
#include <fstream>

using namespace std;

void submit() {

        for(int a=0;a<2;a++)
        {
                for(int b=0;b<10;b++)
                {
                        for(int c=0;c<10;c++)
                        {
                                string filename="submit0";
                                stringstream hundreds;
                                        hundreds << a;
                                stringstream tens;
                                        tens << b;
                                stringstream ones;
                                        ones << c;
                                string fullname="";
                                fullname=filename + hundreds.str() + tens.str() + ones.str();
                        //              cout << fullname << "\n";
                        
                                ofstream myfile;
                                myfile.open(fullname.c_str());
                                
                                
                                myfile << "#!/bin/sh\n";
                                myfile << "#PBS -l nodes=1\n";
                                myfile << "#PBS -A FIAC\n";   
                                myfile << "#PBS -M vanwdani@isu.edu\n";
                                myfile << "#PBS -m abe\n";
                                myfile << "#\n";
                                myfile << "cd /home/lds/src/CLAS/GEMC\n";
                                myfile << "tcsh\n";
                                myfile << "source setup\n";
                                myfile << "cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh\n";
                                myfile << "cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0";
                                        myfile <<a<<b<<c<<"\n";
                                myfile << "gemc -USE_GUI=0 -Hall_Material=\"Vacuum\" -INPUT_GEN_FILE=\"LUND, Phi_Parts_0";
                                        myfile <<a<<b<<c;
                                        myfile << ".LUND\" -N=75000 eg12.gcard\n";
                                myfile << "~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 ";
                                        myfile << "-config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB\n";
                                myfile << "~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio\n";
                                
                                
                                myfile.close();
                        }
                }
        }
         
}


This creates the submitXXXX file

#!/bin/sh
#PBS -l nodes=1
#PBS -A FIAC
#PBS -M vanwdani@isu.edu
#PBS -m abe
#
cd /home/lds/src/CLAS/GEMC
tcsh
source setup
cd /home/lds/src/GEANT/geant4.9.6/geant4.9.6-install/bin/geant4.sh
cd /home/vanwdani/src/GEANT4/geant4.9.6/Simulations/Research/Moller/batch/Phi_Parts/Phi_Parts_0000
gemc -USE_GUI=0 -Hall_Material="Vacuum" -INPUT_GEN_FILE="LUND, Phi_Parts_0000.LUND" -N=75000 eg12.gcard
~/src/CLAS/coatjava-1.0/bin/clas12-reconstruction -i eg12.ev -config DCHB::torus=1.0 -config DCHB::solenoid=0.0 -config DCTB::kalman=true -o eg12_rec.ev  -s DCHB:DCTB:EC:FTOF:EB
~/src/CLAS/coatjava-1.0/bin/rungroovy Analysis.groovy eg12_rec.0.evio


Creating a file named lds-submit

Screen Shot 2016-03-15 at 2.36.26 PM.png


Back to Recon

Differential Cross Section

Variables used in Elastic Scattering

Variables Used in Elastic Scattering

Scattering Cross Section

Scattering Cross Section

old work