Difference between revisions of "DV Analyze Recon"

From New IAC Wiki
Jump to navigation Jump to search
Line 3: Line 3:
  
 
=[[DV_Euler Angles|Euler Angles]]=
 
=[[DV_Euler Angles|Euler Angles]]=
 +
 +
=Transformation Matrix=
 +
 +
The Euler angles can be applied using a transformation matrix
 +
 +
<math>\left(
 +
\begin{array}{ccc}
 +
\cos (\theta ) & 0 & -\sin (\theta ) \\
 +
0 & 1 & 0 \\
 +
\sin (\theta ) & 0 & \cos (\theta ) \\
 +
\end{array}
 +
\right).\left(
 +
\begin{array}{c}
 +
x \\
 +
y \\
 +
z \\
 +
\end{array}
 +
\right)</math>
 +
 +
 +
<math>=\left(
 +
\begin{array}{c}
 +
x \cos (\theta )-z \sin (\theta ) \\
 +
y \\
 +
z \cos (\theta )+x \sin (\theta ) \\
 +
\end{array}
 +
\right)</math>
 +
 +
 +
 +
 +
For event #29, in sector 3, the location of the first interaction is given by
 +
 +
[[File:conversions.png]]
 +
 +
 +
Converting -25 degrees to radians,
 +
<math>\theta =-0.436332</math>
 +
which is the rotation the detectors are rotated from the y axis.
 +
 +
<math>\left(
 +
\begin{array}{ccc}
 +
\cos (\theta ) & 0 & -\sin (\theta ) \\
 +
0 & 1 & 0 \\
 +
\sin (\theta ) & 0 & \cos (\theta ) \\
 +
\end{array}
 +
\right).\left(
 +
\begin{array}{c}
 +
-15.76 \\
 +
0 \\
 +
237.43 \\
 +
\end{array}
 +
\right)</math>
 +
 +
<math>=\left(
 +
\begin{array}{c}
 +
86.0588 \\
 +
0. \\
 +
221.845 \\
 +
\end{array}
 +
\right)</math>
 +
 +
Finding <math>\phi =\frac{120\ 2 \pi }{360};</math> since "sector -1" =3-1=2*60=120 degrees
 +
 +
<math>\left(
 +
\begin{array}{ccc}
 +
\cos (\phi ) & -\sin (\phi ) & 0 \\
 +
\sin (\phi ) & \cos (\phi ) & 0 \\
 +
0 & 0 & 1 \\
 +
\end{array}
 +
\right).\left(
 +
\begin{array}{c}
 +
86.0588 \\
 +
0. \\
 +
221.845 \\
 +
\end{array}
 +
\right)</math>
 +
 +
<math>\left(
 +
\begin{array}{c}
 +
-43.0294 \\
 +
74.5291 \\
 +
221.845 \\
 +
\end{array}
 +
\right)</math>
 +
 +
This shows how the coordinates are transformed and explains the validity of using the TBTracking information to obtain a phi angle in the lab frame.

Revision as of 17:20, 30 March 2016

Analysis.groovy

Euler Angles

Transformation Matrix

The Euler angles can be applied using a transformation matrix

[math]\left( \begin{array}{ccc} \cos (\theta ) & 0 & -\sin (\theta ) \\ 0 & 1 & 0 \\ \sin (\theta ) & 0 & \cos (\theta ) \\ \end{array} \right).\left( \begin{array}{c} x \\ y \\ z \\ \end{array} \right)[/math]


[math]=\left( \begin{array}{c} x \cos (\theta )-z \sin (\theta ) \\ y \\ z \cos (\theta )+x \sin (\theta ) \\ \end{array} \right)[/math]



For event #29, in sector 3, the location of the first interaction is given by

Conversions.png


Converting -25 degrees to radians, [math]\theta =-0.436332[/math] which is the rotation the detectors are rotated from the y axis.

[math]\left( \begin{array}{ccc} \cos (\theta ) & 0 & -\sin (\theta ) \\ 0 & 1 & 0 \\ \sin (\theta ) & 0 & \cos (\theta ) \\ \end{array} \right).\left( \begin{array}{c} -15.76 \\ 0 \\ 237.43 \\ \end{array} \right)[/math]

[math]=\left( \begin{array}{c} 86.0588 \\ 0. \\ 221.845 \\ \end{array} \right)[/math]

Finding [math]\phi =\frac{120\ 2 \pi }{360};[/math] since "sector -1" =3-1=2*60=120 degrees

[math]\left( \begin{array}{ccc} \cos (\phi ) & -\sin (\phi ) & 0 \\ \sin (\phi ) & \cos (\phi ) & 0 \\ 0 & 0 & 1 \\ \end{array} \right).\left( \begin{array}{c} 86.0588 \\ 0. \\ 221.845 \\ \end{array} \right)[/math]

[math]\left( \begin{array}{c} -43.0294 \\ 74.5291 \\ 221.845 \\ \end{array} \right)[/math]

This shows how the coordinates are transformed and explains the validity of using the TBTracking information to obtain a phi angle in the lab frame.