Difference between revisions of "PAA Selenium"

From New IAC Wiki
Jump to navigation Jump to search
Line 13: Line 13:
  
 
==Neutron knockout of Se-82==
 
==Neutron knockout of Se-82==
If you knock a neutron out of Se-82 you produce the unstable isotope Se-81 which has a half life of 18 min and a meta-state with a 57 minute half life.  
+
If you knock a neutron out of Se-82 you produce the unstable isotope Se-81 which Beta emitts with half life of 18 min and a meta-state that emmits a 103 keV gamma with a 57 minute half life.  
  
 
<math>{82 \atop 34\; }Se (\gamma,n){81 \atop \; }Se</math>
 
<math>{82 \atop 34\; }Se (\gamma,n){81 \atop \; }Se</math>

Revision as of 21:58, 7 March 2016

Using PAA ro measure Selenium concentrations.

According to Krouse<ref name="Krous1962"> H.R. Krause and H.G. Thode,"Thermodynamic Properties and Geochemistry of Iosotopic Compounds of Selenium",.Can. J. Chem., vol 40, pg 367</ref> , the fractional concentration of Se-82/Se-76 in plant material is observed to be less than from primordial (meteoric) concentrations by as much as 1.2%. Anaerobic bacteria are known to reduce selenates and senelites in biological systems. This may be the reason plant material has fractionation of selenium isotopes. They also observe excess concentrations of up to 0.4% in soil.


Plant material appears to detect environmental selenium.

Can one use plant material to measure the provenance of selenium?

Can one perform PAA measurements of Se-82 and Se-76?

Neutron knockout of Se-82

If you knock a neutron out of Se-82 you produce the unstable isotope Se-81 which Beta emitts with half life of 18 min and a meta-state that emmits a 103 keV gamma with a 57 minute half life.

[math]{82 \atop 34\; }Se (\gamma,n){81 \atop \; }Se[/math]

The prominent photons emitted have the following energies

262,276 keV for the 18 minute half life

and

260 & 276 keV for the 57 minute half life isotope

Neutron knockout of Se-76

If you knock a neutron out of Se-76 you produce the unstable isotope Se-75 which has a half life of 119 days.

[math]{76 \atop\; }Se (\gamma,n){75 \atop \; }Se[/math]

The prominent photons emitted have the following energies

136, 264, and 279 keV


The article below describes how plant material and soil contain Se-76 to Se-82 ratios that differ from other natural samples by 1.5%. They argue that it is due to the bacteria living in plant material.

File:Krouse CanJournChem 40 1962 p367.pdf

Plant material is a natural way to sample the selenium content to determine if there are difference isotopic ratios due to the impact of human activities on the environment.

Experiments

First Observation of Se lines

Using the 44 Machine at 7 kW power and 44 meV incident electron energy to produce a bremsstrahlung spectrum with a mean energy of 15 meV.

SeRun_01-11-16

SeRun_03-07-16

References

<references/>

MSDS

Selenium shot, amorphous, 2-6 mm, Puratronic, 99.999% Alfa Aesar product # 10603 File:AlphaAesarSelenium MDSD.pdf

Informative links

http://www.deq.idaho.gov/regional-offices-issues/pocatello/southeast-idaho-phosphate-mining/southeast-idaho-selenium-investigations/

https://inldigitallibrary.inl.gov/sti/3169894.pdf

http://giscenter.isu.edu/research/Techpg/sisp/index.htm


PAA_Research