Difference between revisions of "Warren Parsons MS Thesis"

From New IAC Wiki
Jump to navigation Jump to search
Line 65: Line 65:
 
MCLK = 40Mhz
 
MCLK = 40Mhz
  
This was chosen because it is at which the original Calibration pulse experiments were run. Also, in the experiment the CalPulse signal supposedly has a peaking time of 22ns. Thus, if we want to have any hope of catching that pulse, we will most likely need to run at at least 40 Mhz. This, of course, also depends on the peak amplitude of the pulse as well as how long its tail is.
 
  
Right now I'm not doing anything fancy with the Trigger signal. I've changed the v1495 firmware to perform a straight pass-through of the trigger signal from the pattern generator. I am using the "TRIGGER OUT" signal as the MCLK for the VFATs and "OUTPUT1" as the T1 signal for the VFAT. Right now I have OUTPUT1 set such that it will output the Calpulse signal followed by a single break pulse and then followed by the LV1A signal. The pattern is long enough that we should be able to see whether we received any hits on the lines that we have CalChan turned on in the respective ChanReg.
+
The MCLK frequency was chosen because it is at which the original Calibration pulse experiments were run. Also, in the experiment the CalPulse signal supposedly has a peaking time of 22ns. Thus, if we want to have any hope of catching the calibration pulse, we will most likely need to run at at least 40 Mhz. This, of course, also depends on the peak amplitude of the pulse as well as how long its tail is.
 +
 
 +
The v1495 firmware performs a straight pass-through of the trigger signal from the pattern generator. Care has been taken to make sure that the signals are passed along while they are stable rather than at a transition. Also, it is known that the MCLK shown in Figure 10 of the VFAT manual is out of phase by 180<sup>o</sup>, thus care has also been taken to make sure that the T1 signal has the proper phase with respect to MCLK. This whole process causes the signal being output to be one clock cycle behind the signal being injected; this shouldn't be a problem.
 +
 
 +
The "TRIGGER OUT" signal is used as the MCLK for the VFATs and "OUTPUT1" as the T1 signal for the VFAT. OUTPUT1 is set such that it will output the Calpulse signal followed by a single break pulse and then followed by the LV1A signal. The pattern is long enough that we should be able to see whether we received any hits on the lines that we have CalChan turned on in the respective ChanReg. Right now the experiment is running too quickly and does not have the proper setup to see whether the HitCount registers are working properly with the calibration pulses being sent.
  
  

Revision as of 16:13, 2 July 2009

Warren_Parsons_Log_Book

VFAT readout card

I2C

Gumstick

V1495 User Firmware

GEMReadout.vhd
The main function routines?
GEMReadout_tb.vhd
GEMRxChannel.vhd
GEMRxEventDataFIFO.vhd
a routine controlling the FIFO
GEMRxEventSizeFIFO.vhd
Defines the Event size and structure
GEMTxChannel.vhd
PLLVBlock.vhd
spare_if_rtl.vhd
tristate_if_trl.vhd
v1495usr.vhd
v1495usr_pkg.vhd
v1495usr_hal.vqm
From the v1495 manual this is the v1495 Hardware Abstraction Layer. It is an HDL module provided in Verilog format at the netlist level in order to help interface the hardware.
Reading through this file makes it clear that we are using the Cyclone chip family. I can't find where the "cyclone_lcell" module is defined. I am wondering if it is defined inside of the Quartus II program in a library somewhere. Figuring this out would probably help unravel how our HDL code is actually instantiated in hardware.

General introduction to the readout scheme

Readout Blockdiagram

Changing MCLK frequency

Output MCLK and Level 1 Trigger

VFAT input port

V1495 Data format

CODA Readout

The V1495 module transfers data 16 bits at a time to the ROC. An array within the ROC memory will be filled with the V1495 data stream 16 bits at a time to optimize data throughout. The array within the ROC memory will then be transferred to the host computer and stored.

ROC library

Readout list

CODA Data Format

QwAnalaysis

Qweak_R1_Software

Calibration Pulse Experiment and Results

The following are the parameters that were used for the Calibration Pulse experiment.

MCLK = 40Mhz


The MCLK frequency was chosen because it is at which the original Calibration pulse experiments were run. Also, in the experiment the CalPulse signal supposedly has a peaking time of 22ns. Thus, if we want to have any hope of catching the calibration pulse, we will most likely need to run at at least 40 Mhz. This, of course, also depends on the peak amplitude of the pulse as well as how long its tail is.

The v1495 firmware performs a straight pass-through of the trigger signal from the pattern generator. Care has been taken to make sure that the signals are passed along while they are stable rather than at a transition. Also, it is known that the MCLK shown in Figure 10 of the VFAT manual is out of phase by 180o, thus care has also been taken to make sure that the T1 signal has the proper phase with respect to MCLK. This whole process causes the signal being output to be one clock cycle behind the signal being injected; this shouldn't be a problem.

The "TRIGGER OUT" signal is used as the MCLK for the VFATs and "OUTPUT1" as the T1 signal for the VFAT. OUTPUT1 is set such that it will output the Calpulse signal followed by a single break pulse and then followed by the LV1A signal. The pattern is long enough that we should be able to see whether we received any hits on the lines that we have CalChan turned on in the respective ChanReg. Right now the experiment is running too quickly and does not have the proper setup to see whether the HitCount registers are working properly with the calibration pulses being sent.



[1] Warren_Parsons_Log_Book