Difference between revisions of "Uniform distribution in Energy and Theta LUND files"

From New IAC Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
<center>[[File:Init_Mol_Mom_Lab.png]]</center>
 
<center>[[File:Init_Mol_Mom_Lab.png]]</center>
  
 +
 +
For an [[DV_Calculations_of_4-momentum_components#Center_of_Mass_Frame|incoming electron of 11GeV striking a stationary electron]] we would expect:
  
 
<center>[[File:Init_e_Mom_CM.png|600 px]][[File:Init_Mol_Mom_CM.png|600 px]]</center>
 
<center>[[File:Init_e_Mom_CM.png|600 px]][[File:Init_Mol_Mom_CM.png|600 px]]</center>
  
  
For an [[DV_Calculations_of_4-momentum_components#Center_of_Mass_Frame|incoming electron of 11GeV striking a stationary electron]] we would expect:
+
 
 
<center>[[File:Init_e_Theta_CM.png|600 px]][[File:Init_Mol_Theta_CM.png|600 px]]</center>
 
<center>[[File:Init_e_Theta_CM.png|600 px]][[File:Init_Mol_Theta_CM.png|600 px]]</center>
  
  
 +
Since the angle phi has been constrained to remain constant, the x and y components of the momentum will increase in the positive first quadrant.  This implies that the z component of the momentum must decrease by the relation:
 +
 +
<center><math>p^2=p_x^2+p_y^2+p_z^2</math></center>
  
 +
 
<center>[[File:MolPxPyLab.png|600 px]][[File:MolPxPyCM.png|600 px]]</center>
 
<center>[[File:MolPxPyLab.png|600 px]][[File:MolPxPyCM.png|600 px]]</center>
  

Revision as of 17:04, 2 May 2016

Creating uniform LUND files

The LUND file is created by creating an isotropic distribution of particles within the energy range of 2MeV-5.5GeV as is found through GEANT simulation. These particles are also uniformly distributed through the angle theta with respect to the beam line in the range 5-40 degrees. This is done at a set angle phi (10 degrees) with respect to the perpendicular components with respect to the beam line.

Init Mol E Lab.pngInit Mol Theta Lab.png


Init Mol Mom Lab.png


For an incoming electron of 11GeV striking a stationary electron we would expect:

Init e Mom CM.pngInit Mol Mom CM.png


Init e Theta CM.pngInit Mol Theta CM.png


Since the angle phi has been constrained to remain constant, the x and y components of the momentum will increase in the positive first quadrant. This implies that the z component of the momentum must decrease by the relation:

[math]p^2=p_x^2+p_y^2+p_z^2[/math]


MolPxPyLab.pngMolPxPyCM.png


Mol_Lab_4Mom.E= 92.000000
Mol_Lab_4Mom.P= 91.998581
Mol_Lab_4Mom.Px= 51.943569
Mol_Lab_4Mom.Py= 9.159060
Mol_Lab_4Mom.Pz= 75.377159
Mol_Lab_4Mom.Theta= 0.610556
Mol_Lab_4Mom.Phi= 0.174533
Mol_Lab_4Mom.Plus()= 167.377159
Mol_Lab_4Mom.Minus()= 16.622841
Beta= 0.999985
Gamma= 180.041258
Rapidity= 1.154736
 
Mol_CM_4Mom.E= 53.015377
Mol_CM_4Mom.P= 53.012917
Mol_CM_4Mom.Px= 51.943569
Mol_CM_4Mom.Py= 9.159060
Mol_CM_4Mom.Pz= -5.324148
Mol_CM_4Mom.Theta= 1.671397
Mol_CM_4Mom.Phi= 0.174533
Mol_CM_4Mom.Plus()= 47.691229
Mol_CM_4Mom.Minus()= 58.339525
Rapidity= -0.100766
Mol_Lab_4Mom.E= 92.000000
Mol_Lab_4Mom.P= 91.998581
Mol_Lab_4Mom.Px= 52.589054
Mol_Lab_4Mom.Py= 9.272868
Mol_Lab_4Mom.Pz= 74.914246
Mol_Lab_4Mom.Theta= 0.619278
Mol_Lab_4Mom.Phi= 0.174533
Mol_Lab_4Mom.Plus()= 166.914246
Mol_Lab_4Mom.Minus()= 17.085754
Beta= 0.999985
Gamma= 180.043077
Rapidity= 1.139618
 
Mol_CM_4Mom.E= 53.015377
Mol_CM_4Mom.P= nan
Mol_CM_4Mom.Px= 52.589054
Mol_CM_4Mom.Py= 9.272868
Mol_CM_4Mom.Pz= nan
Mol_CM_4Mom.Theta= nan
Mol_CM_4Mom.Phi= 0.174533
Mol_CM_4Mom.Plus()= nan
Mol_CM_4Mom.Minus()= nan
Rapidity= nan