Difference between revisions of "Total Energy in CM Frame"

From New IAC Wiki
Jump to navigation Jump to search
Line 83: Line 83:
  
 
where <math>E_{1}=\sqrt{p_{1}^2+m^2}\approx 11000 MeV</math>
 
where <math>E_{1}=\sqrt{p_{1}^2+m^2}\approx 11000 MeV</math>
 +
 +
 +
 +
----
 +
 +
 +
 +
<center><math>\textbf{\underline{Navigation}}</math>
 +
 +
[[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
 +
[[Scattered_and_Moller_Electron_Energies_in_CM_Frame|<math>\vartriangleright </math>]]
 +
 +
</center>

Revision as of 01:08, 16 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


Total Energy in CM Frame

Setting the lengths of the 4-momenta equal to each other,

[math]{\mathbf P^*}^2={\mathbf P}^2[/math]


we can use this for the collision of two particles of mass m. Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as

[math](E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2=s=(E_{1}+E_{2})^2-(\vec{p_{1}}+\vec p_{2})^2[/math]


[math](E^*)^2-(\vec p\ ^*)^2=(E_{1}+E_{2})^2-(\vec{p_{1}}+\vec p_{2})^2[/math]


[math](E^*)^2=(E_{1}+E_{2})^2-(\vec{p_{1}}+\vec p_{2})^2[/math]


[math]E^*=\sqrt{(E_{1}+E_{2})^2-(\vec{p_{1}}+\vec p_{2})^2}[/math]


[math]E^*=\sqrt{E_{1}^2+2E_{1}E_{2}+E_{2}^2-\vec p_{1} . \vec p_{2} -\vec p_{1} . \vec p_{1} -\vec p_{2} . \vec p_{1} -\vec p_{2} . \vec p_{2} }[/math]


[math]E^*=\sqrt{(E_{1}^2- p_{1}^2 )+(E_{2}^2-p_{2}^2 )+2E_{1}E_{2}-\vec p_{1} . \vec p_{2} -\vec p_{2} . \vec p_{1} }[/math]


[math]E^*=\sqrt{(E_{1}^2- p_{1}^2 )+(E_{2}^2-p_{2}^2 )+2E_{1}E_{2}-p_{1} p_{2}\cos(\theta) - p_{2} p_{1}\cos(\theta) }[/math]


[math]E^*=\sqrt{m_{1}^2+m_{2}^2+2E_{1}E_{2}-p_{1} p_{2}\cos(\theta) - p_{2} p_{1}\cos(\theta) }[/math]


[math]E^*=\sqrt{m_{1}^2+m_{2}^2+2E_{1}E_{2}-2p_{1} p_{2}\cos(\theta) }[/math]


[math]E^*=\sqrt{m_{1}^2+m_{2}^2+2E_{1}E_{2}-2p_{1} p_{2}\cos(\theta) }[/math]


Using the relations [math]\beta\equiv \vec p/E\Longrightarrow \vec p=\beta E[/math]


[math]E^*=\sqrt{2m^2+2E_{1}E_{2}(1-\beta_{1}\beta_{2}\cos(\theta))}[/math]


where [math] \theta [/math] is the angle between the particles in the Lab frame.



In the frame where one particle (p2) is at rest


[math]\Longrightarrow \beta_{2}=0[/math]


[math]\Longrightarrow p_{2}=0[/math]


which implies,


[math] E_{2}=\sqrt{p_{2}^2+m^2}=m[/math]



[math]E^*=(2m(m+E_{1})^{1/2}=(2(.511MeV)(.511MeV+\sqrt{(11000 MeV)^2+(.511 MeV)^2})^{1/2}\approx 106.030760886 MeV[/math]

where [math]E_{1}=\sqrt{p_{1}^2+m^2}\approx 11000 MeV[/math]




[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]