From New IAC Wiki
Jump to navigation Jump to search

Inclusive Scattering


Semi-Inclusive Scattering

Quark distribution Functions

describe [math] q_v (x)[/math] and [math]\Delta q_v (x)[/math] here



The inclusive double polarization asymmetries [math]A_N[/math] can be written in terms of polarized [math]\triangle q_v (x)[/math] and unpolarized [math] q_v (x)[/math] valence quark distributions,

[math]A_{1, p}[/math]I = [math]\frac {4\triangle u_v (x) + \triangle d_v (x)} {4 u_v (x) + d_v (x)} [/math]
[math]A_{1, n}[/math]I = [math]\frac {\triangle u_v (x) + 4\triangle d_v (x)} {u_v (x) + 4d_v (x)} [/math]

The semi-inclusive pion electro-production asymmetries can be written in terms of the valence quark distributions
[math]A_{1, p}[/math][math]\pi^+ - \pi^-[/math] = [math]\frac {4\triangle u_v (x) - \triangle d_v (x)} {4 u_v (x) - d_v (x)} [/math]

[math]A_{1,2H}[/math][math]\pi^+ - \pi^-[/math] = [math]\frac {\triangle u_v (x) + \triangle d_v (x)} { u_v (x) + d_v (x)} [/math]


[math]A[/math][math]\pi^+ - \pi^-[/math] =[math]\frac {\sigma^{\pi^+ - \pi^-}_{\uparrow \downarrow} - \sigma^{\pi^+ - \pi^-}_{\uparrow \uparrow}} {\sigma^{\pi^+ - \pi^-}_{\uparrow \downarrow} + \sigma^{\pi^+ - \pi^-}_{\uparrow \uparrow}} [/math]
where [math]\sigma^{\pi^+ - \pi^-}[/math] is the measured difference of the yield from oppositely charged pions.
The semi - inclusive asymmetry can be expressed in the following way

[math]A_{1,2H}[/math][math]\pi^+ - \pi^-[/math] = [math]\frac {A^{\pi^+}} {1 + \frac {1} {R_p^{{\pi^+}/{\pi^-}}} } [/math] - [math]\frac {A^{\pi^-}} {1 + R_p^{{\pi^+}/{\pi^-}} } [/math]

where [math]R_{2H}^{\pi^+/\pi^-} = \frac{\sigma^{\pi^+}} {\sigma^{\pi^-}}[/math] and

[math]A^{\pi^+ (\pi^-)} = \frac {\sigma^{\pi^+ (\pi^-)}_{\uparrow \downarrow} - \sigma^{\pi^+(\pi^-)}_{\uparrow \uparrow}} {\sigma^{\pi^+ (\pi^-)}_{\uparrow \downarrow} + \sigma^{\pi^+(\pi^-)}_{\uparrow \uparrow}} [/math]

An asymmetry [math]\triangle R_{np} ^{\pi^+ + \pi^-} = \frac {\triangle\sigma_p^{\pi^+ + \pi^-} - \triangle\sigma_n^{\pi^+ + \pi^-}} {\sigma_p^{\pi^+ + \pi^-} - \sigma_n^{\pi^+ + \pi^-}} [/math]