Difference between revisions of "Theory"

From New IAC Wiki
Jump to navigation Jump to search
Line 13: Line 13:
<math>A_{1,p}</math> = <math>4\triangle u_v (x)</math> + <math>\triangle d_v (x)</math><br>
<math>A_{1,p}</math> = <math>4\triangle u_v (x)</math> + <math>\triangle d_v (x)</math><br>
<math>4 u_v (x)</math> + <math>d_v (x)</math>
<math>4 u_v (x)</math> + <math>d_v (x)</math><br>
<math>\frac{<math>4\triangle u_v (x)</math> + <math>\triangle d_v (x)</math>}{<math>4 u_v (x)</math> + <math>d_v (x)</math>}</math>

Revision as of 23:38, 17 July 2007

Inclusive Scattering


Semi-Inclusive Scattering

Quark distribution Functions



The inclusive double polarization asymmetries [math]A_N[/math] can be written in terms of polarized [math]\triangle q_v (x)[/math] and unpolarized [math]q_v (x)[/math] valence quark distributions,

    [math]A_{1,p}[/math]=[math]\frac{\lt math\gt \triangle u_v (x)[/math] + [math]\triangle d_v (x)[/math]}{[math]4u_v (x)[/math] + [math]d_v (x)[/math]}</math>

[math]A_{1,p}[/math] = [math]4\triangle u_v (x)[/math] + [math]\triangle d_v (x)[/math]

[math]4 u_v (x)[/math] + [math]d_v (x)[/math]

[math]\frac{\lt math\gt 4\triangle u_v (x)[/math] + [math]\triangle d_v (x)[/math]}{[math]4 u_v (x)[/math] + [math]d_v (x)[/math]}</math>