Difference between revisions of "TF InclusiveDeltaDoverD"

From New IAC Wiki
Jump to navigation Jump to search
Line 37: Line 37:
  
  
<math> A_1(x,Q^2) \equiv \frac{\sigma_{1/2}^T - \sigma_{3/2}^T}{\sigma_{1/2}^T - \sigma_{3/2}^T} = \frac{g_1(x,Q^2) - \frac{Q^2}{\nu^2} g_2(x,Q^2)}{F_1(x,Q^2)}</math>
+
<math> A_1(x,Q^2) \equiv \frac{\sigma_{1/2}^T - \sigma_{3/2}^T}{\sigma_{1/2}^T - \sigma_{3/2}^T} = \frac{g_1(x,Q^2) - \frac{Q^2}{\nu^2} g_2(x,Q^2)}{F_1(x,Q^2)} \approx \frac{q_1(x,Q^2)}{F_1(x,Q^2)}</math>
  
  

Revision as of 18:22, 22 September 2018

Delta_D_over_D

[math] q_i(x) \equiv q_i^{\parallel}(x) + q_i^{\perp}(x)[/math]

[math] \Delta q_i(x) \equiv q_i^{\parallel}(x) - q_i^{\perp}(x)[/math]



[math] F_1(x) \equiv \frac{1}{2} \sum_q e_i^2 q_i(x) [/math]


using the above definition to define the proton and neutron unpolarized structure function :

[math] F_1^p(x) \equiv \frac{1}{2} \sum_q e_i^2 q_i^p(x) = \frac{1}{2}\left [ \left( \frac{2}{3} \right)^2 u^p(x)+ \left( \frac{-1}{3} \right)^2 d^p(x)\right ] =\frac{1}{2} \left [\frac{4}{9}u^p(x) + \frac{1}{9}d^p(x)\right ][/math]

[math] F_1^n(x) \equiv \frac{1}{2} \sum_q e_i^2 q_i^p(x) = \frac{1}{2}\left [ \left( \frac{2}{3} \right)^2 u^n(x)+ \left( \frac{-1}{3} \right)^2 d^n(x)\right ] =\frac{1}{2} \left [\frac{4}{9}u^n(x) + \frac{1}{9}d^n(x)\right ][/math]


The above is true within the framework of the constituent quark model when in the valence quark region [math]\left ( x_bj\gt 0.5 \right )[/math] where the more massive quarks are ignored as well as anti-quarks

Using Isospin symmetry

[math]u(x) \equiv u^p(x)\equiv d^n(x) \;\;\;\;\;[/math] and [math]\;\;\;\;\;d(x) \equiv d^p(x)\equiv u^n(x) [/math]

The unpolarized structure functions for the proton and neutron may be written as

[math] F_1^p(x) =\frac{1}{2} \left [\frac{4}{9}u(x) + \frac{1}{9}d(x)\right ] \;\;\;\;\;[/math] [math] F_1^n(x)=\frac{1}{2} \left [\frac{4}{9}d(x) + \frac{1}{9}u(x)\right ][/math]

similarly for the polarized structure function

[math] g_1(x) \equiv \frac{1}{2} \sum_q e_i^2 \Delta q_i(x) [/math]


[math] g_1^p(x) =\frac{1}{2} \left [\frac{4}{9} \Delta u(x) + \frac{1}{9} \Delta d(x)\right ] \;\;\;\;\;[/math] [math] g_1^n(x)=\frac{1}{2} \left [\frac{4}{9} \Delta d(x) + \frac{1}{9} \Delta u(x)\right ][/math]


[math] A_1(x,Q^2) \equiv \frac{\sigma_{1/2}^T - \sigma_{3/2}^T}{\sigma_{1/2}^T - \sigma_{3/2}^T} = \frac{g_1(x,Q^2) - \frac{Q^2}{\nu^2} g_2(x,Q^2)}{F_1(x,Q^2)} \approx \frac{q_1(x,Q^2)}{F_1(x,Q^2)}[/math]


[math]g_1^d \approx \left ( 1 - 1.5 \omega_D \right ) \left ( g_1^n + g_1^p \right )[/math]<ref> Eq. 28 from https://arxiv.org/abs/1505.07877 which is based on https://arxiv.org/abs/0809.4308</ref>


<references />


Delta_D_over_D