Difference between revisions of "TF ErrorAna PropOfErr"

From New IAC Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
|-
 
|-
 
| 11/5 || 2.0833 || 80713 || 61497 ||  310 || 148.8 || 2.48 ||  
 
| 11/5 || 2.0833 || 80713 || 61497 ||  310 || 148.8 || 2.48 ||  
}<br>
+
|}
 +
 
 +
<br>
  
 
=Taylor Expansion=
 
=Taylor Expansion=

Revision as of 02:36, 28 February 2010

Instrumental and Statistical Uncertainties

P=68% = Probability that a measurement of a Gaussian variant will lie within 1 [math]\sigma[/math] of the mean

Example of cosmic counting experiments. Is the variation statistical?

Date Time (hrs) Singles Counts Top (N_1) Singles Counts Bottom (N_2) Coincidence Counts Coinc/Hour Coinc/min [math]\sqrt{N}[/math]
11/15 to 11/16 21 359217 383919 3581 170.52 2.84
11/5 2.0833 80713 61497 310 148.8 2.48


Taylor Expansion

A quantity which is calculated using quantities with known uncertainties will have an uncertainty based upon the uncertainty of the quantities used in the calculation.

To determine the uncertainty in a quantity which is a function of other quantities, you can consider the dependence of these quantities in terms of a tayler expansion

Consider a calculation of a Table's Area

[math]A= L \times W[/math]

The mean that the Area (A) is a function of the Length (L) and the Width (W) of the table.

[math]A = f(L,W)[/math]


The Taylor series expansion of a function f(x) about the point a is given as

[math]f(x) = f(a) + \left . f^{\prime}(x)\right |_{x=a} \frac{x}{1!} + \left . f^{\prime \prime}(x)\right |_{x=a} \frac{x^2}{2!} + ...[/math]

[math]= \left . \sum_{n=0}^{\infty} f^{(n)}(x)\right |_{x=a} \frac{x^n}{n!}[/math]


For small values of x (x << 1) we can expand the function about 0 such that

[math]\sqrt{1+x} = \left . \sqrt{1-0} \frac{1}{2}(1+x)^{-1/2}\right |_{x=0} \frac{x^1}{1!}+ \left . \frac{1}{2}\frac{-1}{2}(1+x)^{-3/2} \right |_{x=0} \frac{x^2}{2!}[/math]

[math]=1 + \frac{x}{2} - \frac{x^2}{4}[/math]


The talylor expansion of a function with two variables[math] (x_1 , x_2)[/math] about the average of the two variables[math] (\bar {x_1} , \bar{x_2} )[/math] is given by

[math]f(x_1, x_2)=f(\bar {x}_1, \bar{x}_2)+(x_1-\bar {x}_1) \frac{\partial f}{\partial x_1}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)} +(x_2-\bar{x}_2) \frac{\partial f}{\partial x_2}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)}[/math]

or

[math]f(x_1, x_2)-f(\bar {x}_1, \bar{x}_2)=(x_1-\bar {x}_1) \frac{\partial f}{\partial x_1}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)} +(x_2-\bar{x}_2) \frac{\partial f}{\partial x_2}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)}[/math]

The term

[math]f(x_1, x_2)-f(\bar {x}_1, \bar{x}_2)[/math]

represents a small fluctuation of the function from its average [math]f(\bar {x}_1, \bar{x}_2)[/math] if we ignore higher order terms in the Taylor expansion ( this means the fluctuations are small).

Based on the Definition of Variance

[math]\sigma^2 = \frac{\sum_{i=1}^{i=N} (x_i - \bar{x})^2}{N}[/math]


We can write the variance of the area

[math]\sigma^2_A = \frac{\sum_{i=1}^{i=N} (A_i - \bar{A})^2}{N}[/math]
[math]= \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L}) \frac{\partial A}{\partial L} \bigg |_{\bar L \bar W} + (W-\bar W) \frac{\partial A}{\partial W} \bigg |_{\bar L \bar WW} \right] ^2}{N}[/math]


[math]= \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L}) \frac{\partial A}{\partial L} \bigg |_{\bar L \bar W} \right ] ^2}{N} + \frac{\sum_{i=1}^{i=N} \left [ (W-\bar W) \frac{\partial A}{\partial W} \bigg |_{\bar L \bar W} \right] ^2 }{N}[/math]
[math]+2 \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L}) (W-\bar W) \frac{\partial A}{\partial L} \bigg |_{\bar L \bar W} \frac{\partial A}{\partial W} \bigg |_{\bar L \bar W} \right]^2}{N} [/math]
[math]= \sigma^2_L \left ( \frac{\partial A}{\partial L} \right )^2 +\sigma^2_W \left ( \frac{\partial A}{\partial W} \right )^2 + 2 \sigma^2_{LW} \frac{\partial A}{\partial L} \frac{\partial A}{\partial W} [/math]

where [math]\sigma^2_{LW} = \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L}) (W-\bar W) \right ]^2}{N}[/math] is defined as the Covariance between [math]L[/math] and [math]W[/math].

Weighted Mean and variance

If each observable ([math]x_i[/math]) is accompanied by an estimate of the uncertainty in that observable ([math]\delta x_i[/math]) then weighted mean is defined as

[math]\bar{x} = \frac{ \sum_{i=1}^{i=n} \frac{x_i}{\delta x_i}}{\sum_{i=1}^{i=n} \frac{1}{\delta x_i}}[/math]

The variance of the distribution is defined as

[math]\bar{x} = \sum_{i=1}^{i=n} \frac{1}{\delta x_i}[/math]


[1] Forest_Error_Analysis_for_the_Physical_Sciences