Single neutron angular distribution

From New IAC Wiki
Revision as of 21:12, 26 July 2013 by Kosiolek (talk | contribs)
Jump to navigation Jump to search

The data on the single neutron angular distribution were extracted from the experimental data. All production runs with DU target were processed.

It was observed the angle between single neutron trajectory hitting the detector surface in different x-coordinates and incident photon direction for each of the plastic paddle detectors. This geometry is presented below:

Detector layout wrt photon2.png

Below each detector there is calculated (using the geometry) value of the angle between the photon beam and the neutron central trajectory hitting the detector.

The single neutron angular distribution for each detector extracted from the experimental data and simulation is presented below. In the simulation 3E+6 neutrons were sampled from the point source placed at the positipon of the target isotropically in 4pi.


Detector E:

Experiment Simulation Simulation
Region 1 Region 2 Region 3
Experiment Simulation w/ y-resolution; Solid angle = 0.093 sr Simulation w/o y-resolution; Solid angle = 0.092 sr

After the normalization of simulated single neutron angular distribution (w/o y-resolution) to the total number of neutrons sampled and division of the experimental single neutron angular distribution by the normalized simulation data it was obtained the following single neutron angular distribution for Det E:

Simsingle n angle E overnorm.png


Detector M:

Experiment Simulation Simulation
Region 1 Region 2 Region 3
Experiment Simulation w/ y-resolution; Solid angle = 0.104 sr Simulation w/o y-resolution; Solid angle = 0.104 sr

After the normalization of simulated single neutron angular distribution (w/o y-resolution) to the total number of neutrons sampled and division of the experimental single neutron angular distribution by the normalized simulation data it was obtained the following single neutron angular distribution for Det M:

Simsingle n angle M overnorm.png



Detector F:

Experiment Simulation Simulation
Region 1 Region 2 Region 3
Experiment Simulation w/ y-resolution; Solid angle = 0.085 sr Simulation w/o y-resolution; Solid angle = 0.086 sr

After the normalization of simulated single neutron angular distribution (w/o y-resolution) to the total number of neutrons sampled and division of the experimental single neutron angular distribution by the normalized simulation data it was obtained the following single neutron angular distribution for Det F:

Simsingle n angle F overnorm.png



Detector G:

Experiment Simulation Simulation
Region 1 Region 2 Region 3
Experiment Simulation w/ y-resolution; Solid angle = 0.058 sr Simulation w/o y-resolution; Solid angle = 0.057 sr

After the normalization of simulated single neutron angular distribution (w/o y-resolution) to the total number of neutrons sampled and division of the experimental single neutron angular distribution by the normalized simulation data it was obtained the following single neutron angular distribution for Det G:

Simsingle n angle G overnorm.png


Detector H:

Experiment Simulation Simulation
Region 1 Region 2 Region 3
Experiment Simulation w/ y-resolution; Solid angle = 0.023 sr Simulation w/o y-resolution; Solid angle = 0.031 sr

After the normalization of simulated single neutron angular distribution (w/o y-resolution) to the total number of neutrons sampled and division of the experimental single neutron angular distribution by the normalized simulation data it was obtained the following single neutron angular distribution for Det H:

Simsingle n angle H overnorm.png



Detector K:

Experiment Simulation Simulation
Region 1 Region 2 Region 3
Experiment Simulation w/ y-resolution; Solid angle = 0.018 sr Simulation w/o y-resolution; Solid angle = 0.018 sr

After the normalization of simulated single neutron angular distribution (w/o y-resolution) to the total number of neutrons sampled and division of the experimental single neutron angular distribution by the normalized simulation data it was obtained the following single neutron angular distribution for Det K:

Simsingle n angle K overnorm.png



Detector I:

Experiment Simulation Simulation
Region 1 Region 2 Region 3
Experiment Simulation w/ y-resolution; Solid angle = 0.011 sr Simulation w/o y-resolution; Solid angle = 0.011 sr

After the normalization of simulated single neutron angular distribution (w/o y-resolution) to the total number of neutrons sampled and division of the experimental single neutron angular distribution by the normalized simulation data it was obtained the following single neutron angular distribution for Det I:

Simsingle n angle I overnorm.png

As can be seen there is no overlap in the single neutron angular distributions for the neutron detectors and the normalization of simulated single neutron angular distribution (w/o y-resolution) to the total number of neutrons sampled and division of the experimental single neutron angular distribution by the normalized simulation data shows that the angular distribution is close to be flat for all the neutron detectors.


All in one scale.png

Single neutron energy spectra

Det E

Adjusted tof spectra detE.png

Adjusted SUMtof spectra detE.png

Xcoordinate spectra detE.png

NeutronE spectra detE.png