Relative efficiency

From New IAC Wiki
Revision as of 15:39, 29 July 2014 by Kosiolek (talk | contribs)
Jump to navigation Jump to search

Some papers

File:Nn correlation extraction.pdf


File:Ynn vs Dnn.pdf


Rletive efficiency obtained from the 2n opening angle w/ uncorrelated neutrons

The result of simulation of 2n openeing angle obtained by different neutron detectors (each neutron hit different detector) having y-resolution is presented below. The source of neutrons was isotropic.



Empty target, [math]10^8[/math] events sampled DU target, [math]10^8[/math] events sampled
Region 1 Region 2
Point isotropic n-source w/o material Volume isotropic n-source + DU material


The result of simulation of 2n openeing angle obtained by the same neutron detectors (2 neutrons hit same detector) having y-resolution is presented below:

2n op angle all sameDets.png

In the experiment our expereimental setup did not have y-resolution across the surface of the neutron detectors. So it was necessary to simulate the 2n opening angle for the neutron detectors w/o y-resolution. The result of the simulation of 2n opening angle (the 2n angles detected by all detectors are superimposed) for the case where thre was no y-resolution is going to be noted as [math]D_{nn}[/math]. The experimental data obtained from run 4172 (DU target) on 2n opening angle for uncorrelated neutrons (i.e. in the case of isotropic source of neutrons) from different pulses is going to be noted as [math]Y_{nn}[/math]. The relative efficiency is defined as [math]\epsilon=Y_{nn}/D_{nn}[/math] and it is plotted below as a result of bib-by-bin division of [math]Y_{nn}[/math] over [math]D_{nn}[/math].

Relative effcy diff pulses.png

Relative efficiency of the detecting system obtained using experimental data only (all runs)

In this part the experimantal data are presented for the cases when (1) the 2n opening angle was measured for neutrons correlated and (2) the 2n opening angle was measured for neutrons uncorrelated (neutrons from separate pulses). In the figure below the experimental data on the 2n opening angle measured for the case of correlated neutrons is presented where the statistical error bar width is equal to [math]\pm \sqrt{N_{bin}}[/math] along y-axis and 4.5 deg along x-axis (the bin width). The total number of triggering pulses during the experiment was Nexp_pulses=2.469256E+7.

Exp data 2n correlated Err.png

The experimental data on the 2n opening angle measured for the case of uncorrelated neutrons is presented in the next figure. 80 neutrons from different pulses were taken uniformly to reproduce 2n opening angle for the case of uncorrelated neutrons. The total number of uncorrelated neutron pairs was Npair_uncorr = 3.608397E+7. The width of the error bars is smaller then the size of the markers.

Exp data 2n uncorrelated Err2.png

The result of the division of the two histograms ([math]Y_{nn}^{correlated}/Y_{nn}^{uncorrelated}[/math]) obtained for the described two cases is shown below. In order to obtain the resulting histogram as a division of the previous two histograms we need to do the division on the bin-by-bin basis as [math]\frac{a \pm \delta a}{b \pm \delta b}[/math], where [math]a[/math] and [math]b[/math] are the contents of the corresponding bins and [math]\delta a[/math] and [math]\delta b[/math] are the coresponding statistical errors for the bin contents [math]a[/math] and [math]b[/math]. The error bars were obtained by the propagation in the following way: [math]\delta Err = \frac{a}{b}\sqrt{(\frac{\delta a}{a})^2+(\frac{\delta b}{b})^2}[/math]. The resulting histogram wa normalized to the ratio of the total number of pulses to the total number of uncorrelated neutron pairs considered Norm = Nexp_pulses/Npair_uncorr = 2.469256E+7/3.608397E+7 . It should be noted that the total number of uncorrelated neutron pairs can be varied by changing the number of corresponding combinations and the number of pulses involved into the 2n opening angle reproduction, so the normalization may change.

Corr over uncorr fit.png

Normalization

Thick DU target run# # of multi-hit events per run Total # of events per run
4118 0 1,668,482
4119 0 2,135,901
4133 0 1,704,331
4134 0 1,732,490
4135 0 1,603,604
4137 0 800,699
4144 0 1,645,667
4145 0 1,544,605
4146 0 510,826
4153 0 1,750,657
4154 0 1,631,436
4155 0 1,062,048
4166 0 214,600
4169 0 191,592
4170 0 429,974
4171 0 1,141,113
4172 0 650,734
4173 0 354,992
4174 0 953,831
4175 0 299,086
4176 0 144,774
4177 0 225,877
4203 0 659,050
4204 0 1,636,192


run# 80 puls pairs all nonZ pairs total # of pairs
run4118 1949796 35168980 58460510939894
run4119 2470399 57115623 95803579611944
run4133 1741760 30145143 60999663129029
run4134 1832885 33384324 63031990015343
run4135 1727993 28580648 54002495269034
run4137 833189 7099684 13463513489481
run4144 1770693 26603021 56872651957830
run4145 1592222 20562899 50101929186175
run4146 491705 2157292 5479817982802
run4153 8753312 177560268 64360835399566
run4154 1695297 26345381 55893286150871
run4155 1182325 12257834 23686887361551
run4166 174390 226636 967120869210
run4169 175558 235498 770861409690
run4170 319678 1008712 3882439488990
run4171 1415700 19159461 27344940440490
run4172 623978 3412116 8892563188751
run4173 395573 1327163 2646413182232
run4174 894440 5765727 19105685150123
run4175 255450 619705 1878507428108
run4176 110058 119818 440152774689
run4177 976415 1721476 1071433552715
run4203 3003073 23564022 9121298818219
run4204 1682843 28829022 56219643867161
totals 36068732 542970453 734498220663898