Difference between revisions of "Plotting Different Frames"

From New IAC Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
We can define different arrays to collect the coordinates in the different frames using a passive transformation.  Assuming that the intersection of the ellipse and sense wires is in the y-x plane, we will have a positive rotation, <math>R(\theta_{yx})</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
<pre>
+
[[The_Ellipse|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Parameterizing_the_Ellipse_Equation|<math>\vartriangleright </math>]]
  
rFromYtoX = ( {
+
</center>
    {Cos[6 \[Degree]], -Sin[6 \[Degree]], 0},
 
    {Sin[6 \[Degree]], Cos[6 \[Degree]], 0},
 
    {0, 0, 1}
 
  } );
 
rFromXtoY = ( {
 
    {Cos[6 \[Degree]], Sin[6 \[Degree]], 0},
 
    {-Sin[6 \[Degree]], Cos[6 \[Degree]], 0},
 
    {0, 0, 1}
 
  } );
 
yxPoints = constant\[Theta];
 
constant\[Theta]yx = constant\[Theta];
 
constant\[Theta]yxRotated = constant\[Theta];
 
constant\[Theta]xyz = constant\[Theta];
 
constant\[Theta]xyzRotated = constant\[Theta];
 
  
RowLengths = Table[{Nothing}, {i, 1, 36}];
+
[[File:part1d2.png]]
For[rows = 1, rows < 37, rows++,
 
  RowLengths[[rows]] = Length[constant\[Theta][[rows]]];
 
  For[columns = 1, columns < RowLengths[[rows]] + 1, columns++,
 
  \[Theta] = rows + 4;
 
  \[Phi] = constant\[Theta][[rows, columns, 1]];
 
  constant\[Theta]yx[[rows, columns]] = {y,
 
    Sqrt[a^2 (1 - y^2/b^2)] - \[CapitalDelta]a};
 
  constant\[Theta]xyz[[rows,
 
    columns]] = {constant\[Theta]yx[[rows, columns, 2]],
 
    constant\[Theta]yx[[rows, columns, 1]], 0};
 
  If[constant\[Theta][[rows, columns, 1]] < 0,
 
    constant\[Theta]yx[[rows, columns,
 
      1]] = -constant\[Theta]yx[[rows, columns, 1]];
 
    constant\[Theta]xyz[[rows, columns,
 
      2]] = -constant\[Theta]xyz[[rows, columns, 2]];
 
    ];
 
  constant\[Theta]xyzRotated[[rows, columns]] =
 
    rFromYtoX.{constant\[Theta]xyz[[rows, columns, 1]],
 
      constant\[Theta]xyz[[rows, columns, 2]],
 
      constant\[Theta]xyz[[rows, columns, 3]]};
 
 
 
  constant\[Theta]yxRotated[[rows,
 
    columns]] = {constant\[Theta]xyzRotated[[rows, columns, 2]],
 
    constant\[Theta]xyzRotated[[rows, columns, 1]]};
 
  yxPoints[[rows, columns]] = {y,
 
    Sqrt[a^2 (1 - y^2/b^2)] - \[CapitalDelta]a,
 
    constant\[Theta][[rows, columns, 1]],
 
    constant\[Theta][[rows, columns, 2]]};
 
 
 
  ]
 
  ];
 
ClearAll[\[Theta], \[Phi]];
 
DesiredyxPoints = Desiredconstant\[Theta];
 
Desiredconstant\[Theta]yx = Desiredconstant\[Theta];
 
Desiredconstant\[Theta]yxRotated = Desiredconstant\[Theta];
 
Desiredconstant\[Theta]xyz = Desiredconstant\[Theta];
 
Desiredconstant\[Theta]xyzRotated = Desiredconstant\[Theta];
 
  
DesiredRowLengths = Table[{Nothing}, {i, 1, 36}];
 
For[rows = 1, rows < 37, rows++,
 
  DesiredRowLengths[[rows]] =
 
  Length[Desiredconstant\[Theta][[rows]]];
 
  For[columns = 1, columns < DesiredRowLengths[[rows]] + 1,
 
  columns++,
 
  \[Theta] = rows + 4;
 
  \[Phi] = Desiredconstant\[Theta][[rows, columns, 1]];
 
  Desiredconstant\[Theta]yx[[rows, columns]] = {y,
 
    Sqrt[a^2 (1 - y^2/b^2)] - \[CapitalDelta]a};
 
  Desiredconstant\[Theta]xyz[[rows,
 
      columns]] = {Desiredconstant\[Theta]yx[[rows, columns, 2]],
 
    Desiredconstant\[Theta]yx[[rows, columns, 1]], 0};
 
  If[Desiredconstant\[Theta][[rows, columns, 1]] < 0,
 
    Desiredconstant\[Theta]yx[[rows, columns,
 
      1]] = -Desiredconstant\[Theta]yx[[rows, columns, 1]];
 
    Desiredconstant\[Theta]xyz[[rows, columns,
 
      2]] = -Desiredconstant\[Theta]xyz[[rows, columns, 2]];
 
    ];
 
  Desiredconstant\[Theta]xyzRotated[[rows, columns]] =
 
    rFromYtoX.{Desiredconstant\[Theta]xyz[[rows, columns, 1]],
 
      Desiredconstant\[Theta]xyz[[rows, columns, 2]],
 
      Desiredconstant\[Theta]xyz[[rows, columns, 3]]};
 
 
 
  Desiredconstant\[Theta]yxRotated[[rows,
 
      columns]] = {Desiredconstant\[Theta]xyzRotated[[rows, columns,
 
      2]], Desiredconstant\[Theta]xyzRotated[[rows, columns, 1]]};
 
  DesiredyxPoints[[rows, columns]] = {y,
 
    Sqrt[a^2 (1 - y^2/b^2)] - \[CapitalDelta]a,
 
    Desiredconstant\[Theta][[rows, columns, 1]],
 
    Desiredconstant\[Theta][[rows, columns, 2]]};
 
 
 
  ]
 
  ];
 
ClearAll[\[Theta], \[Phi]]
 
</pre>
 
  
  
The parameter's range changes from the DC frame with 0<t<2<math>\pi</math>, since
+
----
  
<center><math>x(t=0)=a\ cos\ t = a\ cos\ 0 =a = a\ cos\ 2 \pi =x(t=2 \pi)</math></center>
 
  
  
<center><math>y(t=0)=b\ sin\ t = b\ sin\ 0 = 0 = b\ sin\ 2 \pi = y(t=2 \pi)</math></center>
+
<center><math>\underline{\textbf{Navigation}}</math>
 
In the frame of the wires, the x'' axis no longer is aligned with the semi-major axis, therefore for <math>\theta=40^{\circ}, \phi=0, t=0 </math> in the DC frame
 
  
 +
[[The_Ellipse|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Determining_wire-theta_correspondence|<math>\triangle </math>]]
 +
[[Parameterizing_the_Ellipse_Equation|<math>\vartriangleright </math>]]
  
<pre>
+
</center>
In[153]:= ClearAll[X, \[Theta]];
 
\[Theta] = 40;
 
X = X /. Solve[(X + \[CapitalDelta]a)^2/a^2 == 1 && X > 0, X]
 
 
 
Out[155]= {1.68318}
 
</pre>
 
 
 
This gives the (x' , y')=(1.68318, 0) in the DC frame for<math> \phi=0^{\circ}, t=0</math>
 
 
 
 
 
The slope m, with respect to x, is found as<math>\frac{ \Delta x}{\Delta y} = \frac{(1.67396 - 1.076)}{(0.175941 - 0.113092)}=\frac{0.59796}{0.0628481}</math>=9.514
 
 
 
 
 
Slope point form gives
 
 
 
<center><math>x-x_1=m(y-y_1) </math></center>
 
 
 
<center><math>\Rightarrow x - 1.67396 = 9.514(y - 0.17594) </math></center>
 
 
 
<center><math>\Rightarrow y = 9.514x-1.67396 + 1.67396</math></center>
 
 
 
<center><math>\Rightarrow y = 9.514x</math></center>
 
 
 
 
 
<pre>
 
SemiMajorAxis =
 
  ContourPlot[Y == 0, {Y, -1, 1}, {X, 0, 1.8},
 
  Frame -> {True, True, False, False},
 
      PlotLabel ->
 
    "Right side limit of DC as a function of X and Y",
 
  FrameLabel -> {"y (meters)", "x (meters)"}, ContourStyle -> Red,
 
      PlotLegends -> Automatic];
 
SemiMajorAxisRotated =
 
  ContourPlot[X == 9.614 Y, {Y, -2, 2}, {X, 0, 1.8},
 
  Frame -> {True, True, False, False},
 
      PlotLabel ->
 
    "Right side limit of DC as a function of X and Y",
 
  FrameLabel -> {"y (meters)", "x (meters)"}, ContourStyle -> Blue,
 
      PlotLegends -> Automatic];
 
</pre>
 
 
 
The center
 
 
 
 
 
<pre>
 
In[161]:= rFromXtoY.{\[CapitalDelta]a, 0, 0} // MatrixForm
 
 
 
Out[161]//MatrixForm= \!\(
 
TagBox[
 
RowBox[{"(", "",
 
TagBox[GridBox[{
 
{"1.0760024073650314`"},
 
{
 
RowBox[{"-", "0.11309241017012851`"}]},
 
{"0.`"}
 
},
 
GridBoxAlignment->{
 
      "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
 
        "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
 
GridBoxSpacings->{"Columns" -> {
 
Offset[0.27999999999999997`], {
 
Offset[0.5599999999999999]},
 
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
 
Offset[0.2], {
 
Offset[0.4]},
 
Offset[0.2]}, "RowsIndexed" -> {}}],
 
Column], "", ")"}],
 
Function[BoxForm`e$,
 
MatrixForm[BoxForm`e$]]]\)
 
</pre>
 
 
 
The vertex
 
 
 
<pre>
 
In[162]:= rFromXtoY.{1.6831832367824053`, 0, 0} // MatrixForm
 
 
 
Out[162]//MatrixForm= \!\(
 
TagBox[
 
RowBox[{"(", "",
 
TagBox[GridBox[{
 
{"1.6739625828969429`"},
 
{
 
RowBox[{"-", "0.17594055713873974`"}]},
 
{"0.`"}
 
},
 
GridBoxAlignment->{
 
      "Columns" -> {{Center}}, "ColumnsIndexed" -> {},
 
        "Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
 
GridBoxSpacings->{"Columns" -> {
 
Offset[0.27999999999999997`], {
 
Offset[0.5599999999999999]},
 
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
 
Offset[0.2], {
 
Offset[0.4]},
 
Offset[0.2]}, "RowsIndexed" -> {}}],
 
Column], "", ")"}],
 
Function[BoxForm`e$,
 
MatrixForm[BoxForm`e$]]]\)
 
</pre>
 
 
 
 
 
The slope m, with respect to x, is found as <math>\frac{\Delta\ x}{\Delta\ y} = \frac{1.67396 - 1.076}{-0.175941 + 0.113092}=\frac{0.59796}{-0.0628481}=-9.514</math>
 
 
 
 
 
Slope point form gives
 
 
 
<center><math>x' - x_1=m(y'-y_1) </math></center>
 
 
 
 
 
<center><math>\Rightarrow x' - 1.67396 = -9.514(y' + 0.17594) </math></center>
 
 
 
 
 
<center><math>\Rightarrow y' = 9.514x'-1.67396 + 1.67396</math></center>
 
 
 
 
 
<center><math>\Rightarrow y' = -9.514x'</math></center>
 
 
 
 
 
<pre>
 
 
 
SemiMajorAxisRotatedReverse =
 
  ContourPlot[X == -9.514 Y, {Y, -2, 2}, {X, 0, 1.8},
 
  Frame -> {True, True, False, False},
 
      PlotLabel ->
 
    "Right side limit of DC as a function of X and Y",
 
  FrameLabel -> {"y (meters)", "x (meters)"},
 
  ContourStyle -> Green,
 
      PlotLegends -> Automatic];
 
</pre>
 
 
 
Graphing the frame of the sector and the wires within the sector,
 
 
 
 
 
<pre>
 
DataXY = Table[
 
  ListPlot[{constant\[Theta]yx[[i]]}, PlotStyle -> Black,
 
    AxesLabel -> {"y", "x"},
 
    PlotLabel ->
 
    "DC Wire for Constant \[Theta] as a Function of \[Phi]"], {i, 1,
 
    36}];
 
DataXYRotated =
 
  Table[ListPlot[{constant\[Theta]yxRotated[[i]]}, PlotStyle -> Black,
 
    AxesLabel -> {"y'", "x'"},
 
    PlotLabel ->
 
    "DC Wire for Constant \[Theta] as a Function of \[Phi]"],
 
  {i, 1, 36}];
 
DesiredDataXY =
 
  Table[ListPlot[{Desiredconstant\[Theta]yx[[i]]}, PlotStyle -> Black,
 
    AxesLabel -> {"y", "x"},
 
    PlotLabel ->
 
    "DC Wire for Constant \[Theta] as a Function of \[Phi]"], {i, 1,
 
    36}];
 
DesiredDataXYRotated =
 
  Table[ListPlot[{Desiredconstant\[Theta]yxRotated[[i]]},
 
    PlotStyle -> Black, AxesLabel -> {"y'", "x'"},
 
    PlotLabel ->
 
    "DC Wire for Constant \[Theta] as a Function of \[Phi]"],
 
  {i, 1, 36}];
 
ClearAll[\[Theta]];
 
\[Theta] = 40;
 
ellipse40 =
 
  ContourPlot[(x + \[CapitalDelta]a)^2/a^2 + y^2/b^2 == 1, {y, -1,
 
    1}, {x, 1.5, 1.7}, Frame -> {True, True, False, False},
 
  PlotLabel ->
 
    "X' & Y' position on DC sector plane as a function of \[Phi] for \
 
\[Theta]=40\[Degree]", FrameLabel -> {"y' (meters)", "x' (meters)"},
 
  ContourStyle -> Red, PlotLegends -> Automatic];
 
ellipse40Rotated =
 
  ContourPlot[(X Cos[6 \[Degree]] +
 
      Y Sin[6 \[Degree]] + \[CapitalDelta]a)^2/
 
    a^2 + (-X Sin[6 \[Degree]] + Y Cos[6 \[Degree]])^2/b^2 ==
 
    1, {Y, -1, 1}, {X, 1.4, 1.7}, Frame -> {True, True, False, False},
 
    PlotLabel ->
 
    "X'' & Y'' position on DC sector wires a function of \[Phi] for \
 
\[Theta]=40\[Degree]", FrameLabel -> {"y'' (meters)", "x'' (meters)"},
 
    ContourStyle -> Red, PlotLegends -> Automatic];
 
Show[ellipse40,
 
Table[ContourPlot[
 
  xWire == Tan[6 \[Degree]] yWire + x0forWires[number], {yWire, -1,
 
    1}, {xWire, 1.5, 1.7},
 
  FrameLabel -> {"y(meters)", "x(meters)"}], {number, 89, 109}],
 
Table[ContourPlot[
 
  xWire ==
 
    Tan[6 \[Degree]] yWire + x0forWireMiddles[number2], {yWire, -1,
 
    1}, {xWire, 1.5, 1.7},
 
  ContourStyle -> {Dashing[Large]}], {number2, 89, 109}],
 
DataXY[[36]],
 
DesiredDataXY[[36]], left, right, SemiMajorAxis, \
 
SemiMajorAxisRotatedReverse]
 
Show[ellipse40Rotated,
 
Table[ContourPlot[
 
  xWire == Cos[6 \[Degree]] x0forWires[number], {yWire, -1,
 
    1.2}, {xWire, 1.4, 1.7},
 
  FrameLabel -> {"y(meters)", "x(meters)"}], {number, 89, 109}],
 
Table[ContourPlot[
 
  xWire == Cos[6 \[Degree]] x0forWireMiddles[number2], {yWire, -1,
 
    1.2}, {xWire, 1.4, 1.7},
 
  ContourStyle -> {Dashing[Large]}], {number2, 89, 109}],
 
DataXYRotated[[36]],
 
DesiredDataXYRotated[[36]], rightRotated, leftRotated, \
 
SemiMajorAxisRotated, SemiMajorAxis, SemiMajorAxisRotatedReverse]
 
ClearAll[\[Theta]];
 
</pre>
 
 
 
 
 
 
 
<center>[[File:x'y'plane.png]]</center>
 
 
 
 
 
<center>[[File:x2y2plane.png]]</center>
 

Latest revision as of 20:34, 15 May 2018