Plastic Scintillator Calculation

From New IAC Wiki
Revision as of 00:11, 5 February 2009 by Oborn (talk | contribs)
Jump to navigation Jump to search

Below is the calculations done to determine the probability of pair production depending on thickness of the scintillator.

Molecules per [math] cm^3 = \frac{grams CH_{2}}{cm^3} * \frac{mol}{gram} * \frac{N[A]}{mol} [/math] (NOTE: [math] \frac{gram}{cm^3} [/math] is just the density of the scintillator material and N[A] is Avagodro's number)

Molecules per [math] cm^2 (K) = \frac{Molecules}{cm^3} * Thickness [/math]

Weighted cross-section [math] (\sigma_w) = (\sigma_{elec}C + \sigma_{nucleus}C) + 2(\sigma_{elec}H + \sigma_{nucleus}H)[/math]

Probability of interaction (%) [math]= \sigma_w * K * 100%[/math]

All cross sections listed here are pair production cross-sections

For carbon [math]\sigma_{nucleus} = 9.645*10^{-2} barns[/math] or [math]9.645*10^{-26}cm^2[/math]

For carbon [math]\sigma_{elec} = 1.030*10^{-2} barns[/math] or [math]1.030*10^{-26}cm^2[/math]

For hydrogen [math]\sigma_{nucleus} = 2.688*10^{-3} barns[/math] or [math]2.688*10^{-27}cm^2[/math]

For hydrogen [math]\sigma_{elec} = 1.716*10^{-3} barns[/math] or [math]1.716*10^{-27}cm^2[/math]

Avagodro's number [math] = \frac{6.022*10^{23}molecules}{mol}[/math]

Density of polyvinyl toluene (a common scintillator material) [math] = \frac{1.02grams}{cm^3}[/math]

So entering all the numbers into the 4 initial equations gives the following answers:

Molecules per [math] cm^3 = \frac{1.02g PVT}{cm^3} * \frac{1 mol}{14 g} * \frac{6.022*10^{23}molecules}{mol} = \frac{4.387*10^{22}molecules PVT}{cm^3} [/math]

Go Back