Phase space Limiting Particles

From New IAC Wiki
Revision as of 14:10, 30 May 2017 by Vanwdani (talk | contribs) (Created page with "Since the angle phi has been constrained to remain constant, the x and y components of the momentum will increase in the positive first quadrant. This implies that the z compone…")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Since the angle phi has been constrained to remain constant, the x and y components of the momentum will increase in the positive first quadrant. This implies that the z component of the momentum must decrease by the relation:

[math]p^2=p_x^2+p_y^2+p_z^2[/math]

In the Center of Mass frame, this becomes:

[math]p_x^{*2}+p_y^{*2} = p^{*2}-p_z^{*2}[/math]


Since the momentum in the CM frame is a constant, this implies that pz must decrease. We can use the variable rapidity:

[math]y \equiv \frac {1}{2} \ln \left(\frac{E+p_z}{E-p_z}\right)[/math]

where

[math] P^+ \equiv E+p_z[/math]
[math] P^- \equiv E-p_z[/math]

this implies that as

[math]p_z \rightarrow 0 \Rrightarrow \frac{E+p_z}{E-p_z} \rightarrow 1 \Rrightarrow \ln 1 \rightarrow 0 \Rrightarrow y=0[/math]


For forward travel in the light cone:

[math]p_z \rightarrow E \Rrightarrow \frac{E+p_z}{E-p_z} \rightarrow \infin \Rrightarrow \ln \infin \rightarrow \infin \Rrightarrow y \rightarrow \infin [/math]

This corresponds to the scattered electron proven earlier.

For backward travel in the light cone:

[math]p_z \rightarrow -E \Rrightarrow \frac{E+p_z}{E-p_z} \rightarrow 0 \Rrightarrow \ln 0 \rightarrow -\infin \Rrightarrow y \rightarrow -\infin [/math]


Similarly, this corresponds to the Moller electron.


For a particle that transforms from the Lab frame to the CM frame where the particle is not within the light cone:

[math]p_x^2+p_y^2=52.589054^2+9.272868^2=53.400MeV \gt 53.015 MeV (E) \therefore p_z \rightarrow imaginary[/math]

These particles are outside the light cone and are more timelike, thus not visible in normal space. This will reduce the number of particles that will be detected.