Performance of THGEM as a Neutron Detector

From New IAC Wiki
Jump to navigation Jump to search

Title

The Performance of Thick Gaseous Electron Multiplier (THGEM) Preamplifiers as a Neutron Sensitive Detector.

Introduction

I propose to construct and measure the performance of a fission chamber instrumented with preamplifiers known as a Thick Gas Electron Multiplier (THGEM). This fission chamber is a chamber filled with a 90/10 Ar/[math]CO_2[/math] gas mixture enclosing a fissionable target material, like Uranium or Thorium. A neutron of sufficient energy has the potential to interact with fissionable material producing heavy ions known as fission fragments. The fission fragments within 5 micron of the target's surface may escape the target as ions and ionize the gas in the chamber. Electrons freed from the ionization gas can enter the THGEM preamplifier producing secondary electrons which are directed to collectors using strong electric fields.


A THGEM preamplifier is a perforated fiberglass board (PC board) clad with a conducting material. The design is based upon the Gas Electron Multiplier (GEM) invented by Fabio Sauli in 1997<ref name="Sauli1997">F. Sauli, et al, NIM A386, (1997) 531-534 </ref >. The GEM preamplifier is a 50 micron sheet of kapton that is coated on each side with 5 micron of copper. The copper clad kapton is perforated with 50-100 micron diameter holes separated by 100-200 micron in a staggered array . The THGEM preamplifier is a more macroscopic version of GEM that uses a 2 mm thick fiberglass sheet perforated with holes that are 2 mm in diameter.


Strong electric fields are established by supplying a potential difference between the two sides of the kapton, or the fiberglass for the case of the THGEM. The electric field lines transport liberated electrons through the preamplifier holes. For the GEM foils, the smaller diameter of the hole can provide sufficient amplification using a potential difference of 350 V between the two sides. On the other hand, the THGEM with the larger hole diameter requires a higher potential difference of about 2000 Volts to achieve similar amplifications.


The objective of this work will be to construct a THGEM based ionization chamber. The THGEM will follow a proven design <ref name="Agocs">G. Agocs, B. Clark, P. Martinego, R. Oliveira, V. Peskov,gand P. Picchi,JINST, 3, P020112, 2008 </ref > and use a resistive paste to reduce discharge events. The detector may be made sensitive to neutrons by doping the resistive paste with a fissionable material. The doping step will take place once a working THGEM equipped detector has been demonstrated. This fission chamber-like device will have the advantage of measuring the location of the incident neutrons that induced a fission event within the chamber by measuring the ionization signal using a segmented charge collector.

Chapter One: Building the Detector

Detector Description

Using the ESEM for to test the quality of the the procedure for applying ED7100 paste

procedure and results

Chapter Two : Gaseous Medium Physical Concepts

Gaseous Medium Physical Concepts

Boundary Element Method (BEM)

Boundary Element Method is used to solve Laplace or Poisson Equation, a function u(x,y,z) is solved on the domain boundary and the function partial derivatives are evaluated by integrating on the number of elements on the boundary.<ref name="Kuffel"> Kuffel, W. S. Zaengl, J. Kuffel, High voltage engineering: fundamentals, Biddle Ltd, 2nd edition, 2000 </ref>.

References

physical parameter Effect on the detector properties <ref name="Veenhof"/>
Electron drift velocity Dead time
Electron transverse diffusion Spatial resolution (momentum resolution), transverse resolution should match the response function (signal width)
Townsend Coefficient Gain which improves the resolution
Attachment Coefficient Losing the information about an ionization, affects the position information and dE/dx identification
Gas breakdown Discharge at that voltage
Ion mobility Determine the rate of collecting the electrons (if the space charge is eliminated), the signal duration in the readout plate
Ionization rate Affect the spatial resolution, dE/dx identification


<references/>