Difference between revisions of "Occupancy for Sector 1"

From New IAC Wiki
Jump to navigation Jump to search
Line 167: Line 167:
  
  
 +
<center><math>\rightarrow \frac{dN_{scattered}}{t_{run}}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\frac{N_{incident}}{t_{run}} \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}</math></center>
  
<center><math>\rightarrow \frac{1}{t_{run}}\int dN_{scattered}=\frac{N_{scattered}}{t_{run}}=\iint\limits_{\Omega}\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\Phi \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}</math></center>
 
  
  
Expressing the differential cross section as a function of the Center of Mass scattering angle Theta, since it does not depend on Phi or the radius
+
<center><math>\rightarrow \frac{dN_{scattered}}{N_{incident}}=d\sigma_{Lab}</math></center>
 
 
 
 
<center><math>\frac{d\sigma}{d\Omega_{CM}}=\sigma(\theta_{CM})</math></center>
 
 
 
 
 
 
 
We can approximate the integral over the solid angle by using a left handed Riemann sum.  A right handed sum would produce an overestimate.
 
 
 
<center><math>\frac{1}{t_{run}}\sum_{\theta_{Lab}}N_{scattered(\theta_{Lab})}=\sum_{\theta(Lab)}\sum_{\phi}\sigma(\theta_{CM})\frac{\sin \theta_{CM}\ \Delta\theta_{CM}\ \Delta\phi_{CM}}{\sin \theta_{Lab}\ \Delta\theta_{Lab}\ \Delta\phi_{Lab}}\Phi \sin \theta_{Lab}\ \Delta\theta_{Lab}\ \Delta\phi_{Lab}</math></center>
 
 
 
 
 
 
 
Converting current into flux
 
 
 
<center><math>50nA=\frac{50\times 10^{-9}\ A}{1} \times \frac{1\ C}{1\ A} \times \frac{1\ e^{-}}{1\ s} \times \frac{1}{1.602\times 10^{-19}C}\Rightarrow 3.12\times 10^{11}\ \frac{1}{s}=\Phi_{50nA}</math></center>
 
 
 
[[File:50A.png]]
 
 
 
 
 
<center><math>75nA=\frac{75\times 10^{-9}\ A}{1} \times \frac{1\ C}{1\ A} \times \frac{1\ e^{-}}{1\ s} \times \frac{1}{1.602\times 10^{-19}C}\Rightarrow 4.68\times 10^{11}\ \frac{1}{s}=\Phi_{75nA}</math></center>
 
 
 
[[File:75A.png]]
 
 
 
 
 
<center><math>100nA=\frac{100\times 10^{-9}\ A}{1} \times \frac{1\ C}{1\ A} \times \frac{1\ e^{-}}{1\ s} \times \frac{1}{1.602\times 10^{-19}C}\Rightarrow 6.24\times 10^{11}\ \frac{1}{s}=\Phi_{100nA}</math></center>
 
 
 
[[File:100A.png]]
 
 
 
 
 
<center><math>125nA=\frac{125\times 10^{-9}\ A}{1} \times \frac{1\ C}{1\ A} \times \frac{1\ e^{-}}{1\ s} \times \frac{1}{1.602\times 10^{-19}C}\Rightarrow 7.80\times 10^{11}\ \frac{1}{s}=\Phi_{125nA}</math></center>
 
 
 
[[File:125A.png]]
 
 
 
 
 
<center><math>150nA=\frac{150\times 10^{-9}\ A}{1} \times \frac{1\ C}{1\ A} \times \frac{1\ e^{-}}{1\ s} \times \frac{1}{1.602\times 10^{-19}C}\Rightarrow 9.36\times 10^{11}\ \frac{1}{s}=\Phi_{150nA}</math></center>
 
 
 
[[File:150A.png]]
 
  
 
=Number of Hits on Wires=
 
=Number of Hits on Wires=

Revision as of 18:55, 9 May 2018

[math]\textbf{Navigation}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


A bash script to run the GEMC simulations is created. tcsh scripts to run root2evio on lds2 is called using sshpass. The lds2 scripts use sshfs The main script on lds3:

BUILD_GEMC_SIMULATION.sh


The 3 scripts on lds2:

first_commands.tcsh

second_commands.tcsh

last_commands.tcsh


LUND File Output

0.1 degree spacing in the Lab frame. CM Frame is not evenly spaced.


MolThetaLab LUND DC limits.pngMolThetaCM LUND DC limits.png

Applying the weight

MolThetaLab DClimits integral.pngCosMolThetaLab weightedDClimits.png


MolThetaCM DClimits weighted rebin integral.pngCosMolThetaCM weightedDClimits.png


Looking at the angles and the associated weight, we can find the sums

Once_Angles_and_weight=3399.930890560805437

Total_Angles_and_weight=1023379.198058736044914


Checking with Mathematica

CrossSectionMathematica1.png


"Integrating" with Cosine term

CrossSectionMathematica2.png

Finding the Cross Section

CrossSectionMathematicaProof.png


Performing a Riemann sum for [math]-30^{\circ} \lt \phi \lt 30^{\circ}[/math]


CrossSection60deg.png


The cross section should be equal between both frames since the number of particles is an invariant. The differential cross section must differ between frames since the solid angle does vary.

[math]\sigma_{(CM)}=\sigma{(Lab)}[/math]


[math]\frac{d\sigma}{d\Omega}_{(CM)} d\Omega_{(CM)}=\frac{d\sigma}{d\Omega}_{(Lab)} d\Omega_{(Lab)}[/math]



[math]\frac{d\sigma}{d\Omega}_{(CM)} \sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi=\frac{d\sigma}{d\Omega}_{(Lab)} \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi[/math]


[math]\rightarrow \frac{d\sigma}{d\Omega}_{(Lab)}=\frac{d\sigma}{d\Omega}_{(CM)} \frac{\sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi}{ \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi}[/math]


[math]\rightarrow d\sigma_{(Lab)}=\frac{d\sigma}{d\Omega}_{(CM)} \frac{\sin \theta_{(CM)}\ d\theta_{(CM)}\ d\phi}{ \sin \theta_{(Lab)}\ d\theta_{(Lab)}\ d\phi}\sin \theta_{(Lab)} d\theta_{(Lab)}\ d\phi[/math]


MolThetaCMdsigmaIntegral.pngMolThetaLabdSigmaIntegral.png

AssociatedWeights2.pngDSigmaCMLab.png

Adjust for DC Sector 1 Limits

IntegralDCLimitsdSigmaCM.pngIntegralDCLimitsdSigmaLab.png

GEMC Cross Section

Only taking GEMC hits in Sector 1 with Track ID of the mother of the FP equal to zero:

DSigmaVsThetaLabOverlay.png [math]\frac{0.009731\ barn}{0.013924\ barn}=70\%[/math]Efficiency

CorrelatedPhiThetaHits.pngPhiThetaBinsdSigma.png


LUNDPhiThetaBins.pngLUNDPhiThetaBinsWeighted.png


Taking GEMC hits with ANY Track ID of the mother of the FP :


DSigmaVsThetaLabWithAll.png[math]\frac{0.012433\ barn}{0.013924\ barn}=90\%[/math]Efficiency

CORRELATED PhiThetaHits.pngCORRELATED PhiThetaHits dSigma.png


NOTCORRELATED PhiThetaHits.pngNOTCORRELATED PhiThetaHits dSigma.png


LUNDPhiThetaBins.pngLUNDPhiThetaBinsWeighted.png

Using the Cross Section

If we make the assumption that the beam of incoming electrons is a flux over an area for a given time,

[math]N_{incident}=\Phi\ A_{beam}\ t_{run} \rightarrow dN_{incident}=\Phi\ dA_{beam}\ t_{run}\rightarrow\ \frac{dN_{incident}}{ dA_{beam}}=\Phi\ t_{run}[/math]


Using the definition of the differential cross section:

[math]\frac{d\sigma}{d\Omega}\equiv \frac{ \Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)}{\Biggl(\frac{dN_{incident}}{dA}\Biggr)}\rightarrow \frac{d\sigma}{d\Omega}\Biggl(\frac{dN_{incident}}{dA}\Biggr)=\Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)[/math]


Substituting using the flux

[math] \frac{d\sigma}{d\Omega}\Biggl(\frac{dN_{incident}}{dA}\Biggr)=\Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)\rightarrow \frac{d\sigma}{d\Omega}\Phi\ t_{run}=\Biggl(\frac{dN_{scattered}}{d\Omega} \Biggr)[/math]


[math]\rightarrow dN_{scattered}= \frac{d\sigma}{d\Omega}\Phi d\Omega= \frac{d\sigma}{d\Omega}\Phi\ t_{run}\ \sin \theta\ d\theta\ d\phi[/math]


Since the differential cross section is known in the Center of Mass frame of reference, but measurements are taken in the Lab Frame, a transformation must occur.

[math]\rightarrow dN_{scattered}= \frac{d\sigma}{d\Omega_{Lab}}\Phi\ t\ \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


[math]\frac{d\sigma}{d\Omega_{Lab}}\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}=\frac{d\sigma}{d\Omega_{CM}}\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}[/math]


[math]\frac{d\sigma}{d\Omega_{Lab}}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}[/math]


[math]\rightarrow dN_{scattered}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\Phi\ t_{run}\ \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


If we divide both sides by time


[math]\rightarrow \frac{dN_{scattered}}{t_{run}}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\Phi \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


[math]\rightarrow \frac{dN_{scattered}}{t_{run}}=\frac{d\sigma}{d\Omega_{CM}}\frac{\sin \theta_{CM}\ d\theta_{CM}\ d\phi_{CM}}{\sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}}\frac{N_{incident}}{t_{run}} \sin \theta_{Lab}\ d\theta_{Lab}\ d\phi_{Lab}[/math]


[math]\rightarrow \frac{dN_{scattered}}{N_{incident}}=d\sigma_{Lab}[/math]

Number of Hits on Wires

Not all 1st hits are on layer 1. Using the correlated theoretical wire number associated with the LUND Theta and Phi values:


WireBinsDCLimits.pngDSigmaVsWireBins.png


The theoretical model has events which are detected by physically impossible valued wires. If we limit the lowest wire value to 0.5 and the highest to less than 112.5


TheoreticalWireBinsCorrected.pngDSigmaVsWireBinCorrected.png

Using the histogram integral function we find the sum of the values for the wire 1 bin. Collecting the individual [math]d\sigma[/math] for each theoretical and physical hits on DC wires.




Wire 1 Based Actual Hits σ=0.00001287 barn

File:Wire1 AcutalHITS.text

Alt text
σ=0.000013 barn
[math]\frac{1}{t_{run}}\sum_{\theta_{Lab}}N_{scattered(\theta_{Lab})}=\sum_{\theta(Lab)}\sum_{\phi}\sigma(\theta_{CM})\frac{\sin \theta_{CM}\ \Delta\theta_{CM}\ \Delta\phi_{CM}}{\sin \theta_{Lab}\ \Delta\theta_{Lab}\ \Delta\phi_{Lab}}\Phi \sin \theta_{Lab}\ \Delta\theta_{Lab}\ \Delta\phi_{Lab}[/math]


[math]\frac{N_{scattered}}{t_{run}}=0.00001287\ \Phi_{nA}[/math]


[math]\frac{N_{scattered}}{0.00001287\ \Phi_{nA}}=t_{run}[/math]


For 1 hit on wire 1: [math]\begin{cases} 3.12\times 10^{11}\ \frac{1}{s}=\Phi_{50nA}\rightarrow t=249ns\\ 4.68\times 10^{11}\ \frac{1}{s}=\Phi_{75nA}\rightarrow t=166ns\\ 6.24\times 10^{11}\ \frac{1}{s}=\Phi_{100nA}\rightarrow t=125ns\\ 7.80\times 10^{11}\ \frac{1}{s}=\Phi_{125nA}\rightarrow t=99.6ns\\ 9.36\times 10^{11}\ \frac{1}{s}=\Phi_{150nA}\rightarrow t=83ns \end{cases}[/math]







Wire 1 Based Correlated Hits σ=0.00001345 barn

File:Wire1 CorrelatedHITS.text

Alt text
σ=0.000013 barn
[math]\frac{1}{t_{run}}\sum_{\theta_{Lab}}N_{scattered(\theta_{Lab})}=\sum_{\theta(Lab)}\sum_{\phi}\sigma(\theta_{CM})\frac{\sin \theta_{CM}\ \Delta\theta_{CM}\ \Delta\phi_{CM}}{\sin \theta_{Lab}\ \Delta\theta_{Lab}\ \Delta\phi_{Lab}}\Phi \sin \theta_{Lab}\ \Delta\theta_{Lab}\ \Delta\phi_{Lab}[/math]


[math]\frac{N_{scattered}}{t_{run}}=0.00001345\ \Phi_{nA}[/math]


[math]\frac{N_{scattered}}{0.00001345\ \Phi_{nA}}=t_{run}[/math]


For 1 hit on wire 1: [math]\begin{cases} 3.12\times 10^{11}\ \frac{1}{s}=\Phi_{50nA}\rightarrow t=238ns\\ 4.68\times 10^{11}\ \frac{1}{s}=\Phi_{75nA}\rightarrow t=159ns\\ 6.24\times 10^{11}\ \frac{1}{s}=\Phi_{100nA}\rightarrow t=119ns\\ 7.80\times 10^{11}\ \frac{1}{s}=\Phi_{125nA}\rightarrow t=95.3ns\\ 9.36\times 10^{11}\ \frac{1}{s}=\Phi_{150nA}\rightarrow t=79.4ns \end{cases}[/math]













Wire 1 Based Theoretical Hits σ=0.00001387 barn

File:Wire1 Based Angles and weight.txt

Alt text
σ=0.000014 barn
[math]\frac{1}{t_{run}}\sum_{\theta_{Lab}}N_{scattered(\theta_{Lab})}=\sum_{\theta(Lab)}\sum_{\phi}\sigma(\theta_{CM})\frac{\sin \theta_{CM}\ \Delta\theta_{CM}\ \Delta\phi_{CM}}{\sin \theta_{Lab}\ \Delta\theta_{Lab}\ \Delta\phi_{Lab}}\Phi \sin \theta_{Lab}\ \Delta\theta_{Lab}\ \Delta\phi_{Lab}[/math]


[math]\frac{N_{scattered}}{t_{run}}=0.00001387\ \Phi_{nA}[/math]


[math]\frac{N_{scattered}}{0.00001387\ \Phi_{nA}}=t_{run}[/math]


For 1 hit on wire 1: [math]\begin{cases} 3.12\times 10^{11}\ \frac{1}{s}=\Phi_{50nA}\rightarrow t=231ns\\ 4.68\times 10^{11}\ \frac{1}{s}=\Phi_{75nA}\rightarrow t=154ns\\ 6.24\times 10^{11}\ \frac{1}{s}=\Phi_{100nA}\rightarrow t=116ns\\ 7.80\times 10^{11}\ \frac{1}{s}=\Phi_{125nA}\rightarrow t=92.4ns\\ 9.36\times 10^{11}\ \frac{1}{s}=\Phi_{150nA}\rightarrow t=77.0ns \end{cases}[/math]

Occupancy

LH2_NOSol_0Tor_11GeV_IsotropicPhi_v2_6_ShieldOut

Run

./BUILD_GEMC_SIMULATION.sh 

DVMacro

Clas12Mon

Create hipo file


Move hipo file to clas12mon folder

mv LH2_NOSol_0Tor_11GeV_IsotropicPhi_v2_6_ShieldOut.hipo ~/clas12mon

Run monitor program

./README

Load hipo file

"Press H for hipo"
"Press play"
"Switch to 


For [math]5^{\circ}\gt \theta\lt 40^{\circ}\ -30^{\circ}\gt \phi\lt 30^{\circ}[/math]

Clas12monNoSolNoShield.png


FOR DC Limits

OccupancyDCLimits Unweighted.png

Calculating

[math]N_0=\Delta t \cdot R_{events}=\Delta t \cdot \frac{N_{events}}{t_{simulated}}=250\times 10^{-9}\ s \cdot \frac{98181}{9.3\times 10^{-6}\ s}=2639[/math]


[math]Occupancy=\frac{N_{hits}}{N_0}=\frac{N_{hits}}{\Delta t \cdot R_{events}}=\frac{t_{simulated}\cdot N_{hits}}{N_{events}\cdot \Delta t}=[/math]