Numbers for rate of Brems intensity spectrum:
[math]\frac{e^{-}}{sec}[/math] = [math]30 \cdot 10^{-3} \frac{Coulomb}{sec} \times \frac{50 \cdot 10^{-9} sec}{10^{-3} sec} \times \frac{1 \cdot e^{-}}{1.6 \cdot 10^{-19}Coulomb} =\gt 9.4 \cdot 10^{12} \frac{e^{-}}{sec}
[/math]
[math]10^{-3} \frac{\frac{\gamma 's}{MeV}}{\frac{e^{-}}{radiation lengths}} \times 2 \cdot 10^{-4} radiation lengths \times 15 MeV \times 9.4 \cdot 10^{12} \frac{e^{-}}{sec}=2.8 \cdot 10^{7} \frac{\gamma}{sec}[/math]
Number of ɣ + d -> n + p events/sec
[math]2.8 \cdot 10^{7} \frac{\gamma}{sec} \times 4 \cdot 10^{-4} = 10^{4}[/math]
Probability of Photodisintegration Event
target thickness in [math]\frac{Dnuclei}{cm^{2}} \times \sigma in cm^{2}[/math]
Worst Case Isotropic Neutrons
Let's say we have:
radius detector = 1 cm
1 meter away
fractional solid angle = [math]\frac{\pi * (1 cm)^{2}}{4 \pi (100cm^{2}} = \frac{1}{4} \times 10^{-4}[/math] <= geometrical acceptance
10° efficient of n° detection
[math] 10^{4} \frac{photodisintegrations}{sec} \times \frac{1}{4} \cdot 10^{-4} \times 10^{-1} = .025 \frac{events}{sec}[/math]
time for [math]10^{4}[/math] events = 100 hours for 1%
- 24 hours for 2%
- 6 hours for 4%
Therefore, this experiment is do able.
Go Back