Difference between revisions of "Mo-99 Production"

From New IAC Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
2.) The <math>^{100}Mo(\gamma, f)</math> X-sect peaks at 160 mbarns when the photon energy is 15 MeV:(photofission of Mo-100 and U-238 have similar X-sections)
 
2.) The <math>^{100}Mo(\gamma, f)</math> X-sect peaks at 160 mbarns when the photon energy is 15 MeV:(photofission of Mo-100 and U-238 have similar X-sections)
  
3.) single neutron emissions makes up about 60% of the photofission X-section <math>\Rightarrow</math> <math>^{100}Mo(\gamma, n)</math> X-sect is about 96 mbarns when phtoton energy is 15 MeV
+
3.) single neutron emissions makes up about 60% of the photofission X-section <math>\Rightarrow</math> <math>^{100}Mo(\gamma, n)</math> X-sect is about 96 mbarns when photon energy is 15 MeV

Revision as of 03:24, 11 January 2009

TRIUMF task force report 2008

The above report suggests that

1.) you get about [math]10^{12} \frac{neutrons}{s \cdot kW}[/math] when a 30 MeV electron beam hits a converter like Tungsten producing photons which hit a 5 cm thick Moly target. A 100 kW electron beam could make about 800 Ci/s of Mo-99.

2.) The [math]^{100}Mo(\gamma, f)[/math] X-sect peaks at 160 mbarns when the photon energy is 15 MeV:(photofission of Mo-100 and U-238 have similar X-sections)

3.) single neutron emissions makes up about 60% of the photofission X-section [math]\Rightarrow[/math] [math]^{100}Mo(\gamma, n)[/math] X-sect is about 96 mbarns when photon energy is 15 MeV