Difference between revisions of "Mandelstam Representation"

From New IAC Wiki
Jump to navigation Jump to search
Line 23: Line 23:
 
<center><math>\Longrightarrow \left({\mathbf P_1^*}- {\mathbf P_2^{'*}}\right)^2=\left({\mathbf P_2^*}- {\mathbf P_1^{'*}}\right)^2\equiv u</math></center>
 
<center><math>\Longrightarrow \left({\mathbf P_1^*}- {\mathbf P_2^{'*}}\right)^2=\left({\mathbf P_2^*}- {\mathbf P_1^{'*}}\right)^2\equiv u</math></center>
  
 +
 +
 +
==s Channel==
  
 
The s quantity is known as the square of the center of mass energy (invariant mass)
 
The s quantity is known as the square of the center of mass energy (invariant mass)
 +
<center><math>s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2</math></center>
 +
 +
 +
 +
 +
<center><math>s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2</math></center>
 +
 +
 +
<center><math>s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2}</math></center>
 +
 +
 +
As shown earlier, the square of a 4-momentum is
 +
 +
 +
<center><math>\mathbf P^{2} \equiv m^2</math></center>
 +
 +
 +
<center><math>s \equiv m^{2}+2 \mathbf P_1^* \mathbf P_2^*+  m_2^{2}</math></center>
 +
 +
 +
This gives
 +
 +
<center><math>s \equiv  2m^{2}+2 \mathbf P_1^* \mathbf P_2^*</math></center>
 +
 +
 +
Similarly, the scalar product of two 4-momentums
 +
 +
<center><math>s \equiv 2m^2+2(E_1^*E_2^*-\vec p_1^* \vec p_2^*)</math></center>
 +
 +
 +
In the center of mass frame of reference,
 +
 +
<center><math>E_1^*=E_2^* \quad and \quad \vec p_1^*=-\vec p_2^*</math></center>
 +
 +
 +
<center><math>s \equiv 2m^2+2(E_1^{*2}+\vec p_1^{*2} )</math></center>
 +
  
 +
Using the relativistic energy equation
  
 +
<center><math>E^2 \equiv p^2+m^2</math></center>
 +
 +
 +
<center><math>s \equiv 2m^2+2((m^2+p_1^{*2})+p_1^{*2})</math></center>
 +
 +
 +
<center><math>s=4(m_{CM}^2+p_{CM}^2)</math></center>
 +
 +
==t Channel==
 
The t quantity is known as the square of the 4-momentum transfer
 
The t quantity is known as the square of the 4-momentum transfer
  
 +
<center><math>t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2=\left({\mathbf P_2^{*}}+ {\mathbf P_2^{'*}}\right)^2</math></center>
 +
 +
<center>[[File:400px-CMcopy.png]]</center>
 +
 +
 +
 +
<center><math>t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2</math></center>
 +
 +
 +
<center><math>t \equiv P_1^{*2}-2P_1^*P_1^{'*}+P_1^{'*2}</math></center>
 +
 +
 +
<center><math>t \equiv 2m_1^2-2E_1^*E_1^{'*}+2p_1^*p_1^{'*}</math></center>
 +
 +
 +
<center><math>t \equiv 2m_1^*-2E_1^{*2}+2p_1^{*2}cos\ \theta</math></center>
 +
 +
 +
<center><math>t \equiv -2p_1^{*2}(1-cos\ \theta)</math></center>
 +
 +
==u Channel==
  
  

Revision as of 20:32, 8 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Mandelstam Representation

Mandelstam.png


[math]\Longrightarrow \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2\equiv s[/math]


[math]\Longrightarrow \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2=\left({\mathbf P_2^*}- {\mathbf P_2^{'*}}\right)^2\equiv t[/math]


[math]\Longrightarrow \left({\mathbf P_1^*}- {\mathbf P_2^{'*}}\right)^2=\left({\mathbf P_2^*}- {\mathbf P_1^{'*}}\right)^2\equiv u[/math]


s Channel

The s quantity is known as the square of the center of mass energy (invariant mass)

[math]s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2[/math]



[math]s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2[/math]


[math]s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2}[/math]


As shown earlier, the square of a 4-momentum is


[math]\mathbf P^{2} \equiv m^2[/math]


[math]s \equiv m^{2}+2 \mathbf P_1^* \mathbf P_2^*+ m_2^{2}[/math]


This gives

[math]s \equiv 2m^{2}+2 \mathbf P_1^* \mathbf P_2^*[/math]


Similarly, the scalar product of two 4-momentums

[math]s \equiv 2m^2+2(E_1^*E_2^*-\vec p_1^* \vec p_2^*)[/math]


In the center of mass frame of reference,

[math]E_1^*=E_2^* \quad and \quad \vec p_1^*=-\vec p_2^*[/math]


[math]s \equiv 2m^2+2(E_1^{*2}+\vec p_1^{*2} )[/math]


Using the relativistic energy equation

[math]E^2 \equiv p^2+m^2[/math]


[math]s \equiv 2m^2+2((m^2+p_1^{*2})+p_1^{*2})[/math]


[math]s=4(m_{CM}^2+p_{CM}^2)[/math]

t Channel

The t quantity is known as the square of the 4-momentum transfer

[math]t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2=\left({\mathbf P_2^{*}}+ {\mathbf P_2^{'*}}\right)^2[/math]
400px-CMcopy.png


[math]t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2[/math]


[math]t \equiv P_1^{*2}-2P_1^*P_1^{'*}+P_1^{'*2}[/math]


[math]t \equiv 2m_1^2-2E_1^*E_1^{'*}+2p_1^*p_1^{'*}[/math]


[math]t \equiv 2m_1^*-2E_1^{*2}+2p_1^{*2}cos\ \theta[/math]


[math]t \equiv -2p_1^{*2}(1-cos\ \theta)[/math]

u Channel



[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]