Difference between revisions of "Looking at effects of Solenoid on Phi Shifts"

From New IAC Wiki
Jump to navigation Jump to search
Line 19: Line 19:
  
 
11000    0    0    11000.5    0    0    0    5500.31    28.1338    -44.9298    5500.56    0    0    0    5498.52    -28.1338    44.9298    5498.78    0    0    0</pre>
 
11000    0    0    11000.5    0    0    0    5500.31    28.1338    -44.9298    5500.56    0    0    0    5498.52    -28.1338    44.9298    5498.78    0    0    0</pre>
 +
 +
At this energy for the scattered electron:
 +
<pre>
 +
Relativistically, the x and y components remain the same in the conversion from the Lab frame to the Center of Mass frame, since the direction of motion is only in the z direction.
 +
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"      | <math>p^*_{2(x)}\Leftrightarrow p_{2(x)}'</math>
 +
|}
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"  | <math>p^*_{2(y)}\Leftrightarrow p_{2(y)}'</math>
 +
|}
 +
 +
 +
 +
{| class="wikitable" align="center"
 +
| style="background: gray"  | <math>p^*_{2(z)}=\sqrt {(p^*_2)^2-(p^*_{2(x)})^2-(p^*_{2(y)})^2}</math>
 +
|}
 +
 +
 +
 +
 +
<center>[[File:xz_lab.png | 400 px]]</center>
 +
<center>'''Figure 2: Definition of Moller electron variables in the Lab Frame in the x-z plane.'''</center>
 +
 +
 +
<center><math>\theta '_2\equiv \arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)=\arcos \left(\frac{28.1338}{5500.8154}\equiv 1.5 degrees</math></center></pre>
 +
 +
 +
This is still within the 7 degrees of the detector "cone" with respect to the beam line.
 +
  
 
We can alter the lines
 
We can alter the lines

Revision as of 23:00, 5 April 2016

Using Moller Data to alter energy range

Using the Moller event file MollerScattering_NH3_4e8incident.dat, we can use the fact that GEMC will only create a particle based on the Moller electron. While the data for the scattered electron is passed within a LUND file, kinematically this electron doesn't leave the beam area, and thus never enters the detectors to be recreated. Since the solenoid's purpose is draw electrons trajectories closer the the beam line any electron close the the beam line will be drawn even closer, ensuring that it is never recreated in a GEMC simulation.

We can alter the energy conversion from MollerScattering_NH3_4e8incident.dat to investigate the energy-phi shift relationship

FinalTheta.jpg

Using the fact that the minimum momentum of MollerScattering_NH3_4e8incident.dat is about 2 MeV,

awk 'NR == 1 {line = $0; min = $15} NR >1 && $15 < min {line =$0; min =$15} END{print line}' MollerScattering_NH3_4e8incident.dat

11000    0     0     11000.5     0     0     0     10997.9     1.42548     -0.177032     10998.4     0     0     0     2.01929     -1.42548     0.177032     2.01939     0     0     0 

and the maximum of about 5500 MeV,

awk 'NR == 1 {line = $0; max = $15} NR >1 && $15 > max {line =$0; max =$15} END{print line}' MollerScattering_NH3_4e8incident.dat

11000    0     0     11000.5     0     0     0     5500.31     28.1338     -44.9298     5500.56     0     0     0     5498.52     -28.1338     44.9298     5498.78     0     0     0

At this energy for the scattered electron:

Relativistically, the x and y components remain the same in the conversion from the Lab frame to the Center of Mass frame, since the direction of motion is only in the z direction.



{| class="wikitable" align="center"
| style="background: gray"      | <math>p^*_{2(x)}\Leftrightarrow p_{2(x)}'</math>
|}


{| class="wikitable" align="center"
| style="background: gray"  | <math>p^*_{2(y)}\Leftrightarrow p_{2(y)}'</math>
|}



{| class="wikitable" align="center"
| style="background: gray"  | <math>p^*_{2(z)}=\sqrt {(p^*_2)^2-(p^*_{2(x)})^2-(p^*_{2(y)})^2}</math>
|}




<center>[[File:xz_lab.png | 400 px]]</center>
<center>'''Figure 2: Definition of Moller electron variables in the Lab Frame in the x-z plane.'''</center>


<center><math>\theta '_2\equiv \arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)=\arcos \left(\frac{28.1338}{5500.8154}\equiv 1.5 degrees</math></center>


This is still within the 7 degrees of the detector "cone" with respect to the beam line.


We can alter the lines

    Px=evt.FnlMom[0]/1000;
                Py=evt.FnlMom[1]/1000;
                Pz=evt.FnlMom[2]/1000;                
                px=evt.MolMom[0]/1000;
                py=evt.MolMom[1]/1000;
                pz=evt.MolMom[2]/1000;
                
                KE=evt.FnlKE/1000;
                ke=evt.MolKE/1000;

Dividing by 1 will give us a distribution of 2GeV-5500 GeV.

Divinding by 10 will give us a distribution of 0.2GeV-550 GeV

Dividing by 100 will give us a distribution of 0.02GeV-55 GeV

Solenoid effect > 2GeV

Solenoid effect > 200 MeV

Solenoid effect > 20MeV


Links

Back