Difference between revisions of "Linac Run Plan April 2018, Dr. McNulty"

From New IAC Wiki
Jump to navigation Jump to search
 
(105 intermediate revisions by the same user not shown)
Line 1: Line 1:
=Date=
+
=Beam Line info=
  
85 useable OSLs
+
Machine: 25b Linac
  
Machine: 24b Linac
+
0<math>&deg;</math> port
  
 
Beam Energy: 8 MeV
 
Beam Energy: 8 MeV
  
Rep Rate: Max (180Hz)?
+
Rep Rate: Max (150Hz?)
  
:{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0  
+
Pulse Width: 100ns
 +
 
 +
=Run Plan=
 +
 
 +
==To find operating point==
 +
 
 +
- Will use 15 OSLs from reproducibility study to make sure that dose is within acceptable range
 +
 
 +
===Table===
 +
 
 +
'''Start at 7am'''
 +
 
 +
:{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0"
 +
! scope="col" style="width: 50px;" | Shot #
 +
! scope="col" style="width: 150px;" | Number of Pulses
 +
! scope="col" style="width: 150px;" | Number of OSLs
 +
! scope="col" style="width: 150px;" | Beam Current
 +
! scope="col" style="width: 150px;" | Dose/pulse
 +
! scope="col" style="width: 150px;" | Expected Dose/pulse
 +
|-
 +
| 1 || 80 || 1 ||50 mA || ||
 +
|-
 +
| 2 ||  || 1 || mA || ||
 +
|-
 +
| 3  || || 1 ||  mA || ||
 +
|-
 +
| 4  || || 1 ||  mA || ||
 +
|-
 +
| 5  || || 1 || mA || ||
 +
|-
 +
| 6  || || 1 ||  mA || ||
 
|-
 
|-
| Shot # ||Start Time || End Time || Number of OSLs || Distance to end of beampipe || Beam Current || Aluminum Brick || Background Subtracted PMT Counts
+
| 7 || || 1 || mA || ||
 
|-
 
|-
| 1 ||7am || 7:15am || 1 || 25cm || amps || Out ||
+
| || || 1 || mA || ||
 
|-
 
|-
| 2 ||7:20am || 7:35am || 1 || 25cm || amps || Out ||
+
| || || 1 || mA || ||
 
|-
 
|-
| 3 || 7:40am || 7:55am || 1 || 25cm || amps || Out ||
+
| 10  || || 1 || mA || ||
 
|-
 
|-
| 4 || 8:00 || 8:20 || 1 || 25cm || amps || Out ||
+
| 11  || || 1 || mA || ||
 
|-
 
|-
| 5 || || || 1 || 25cm || amps || Out ||
+
| 12  || || 1 || mA|| ||
 
|-
 
|-
| 6 || || || 1 || 25cm || amps || In ||
+
| 13  || || 1 || mA|| ||
 
|-
 
|-
| 7 || || || 1 || 25cm || amps || In ||
+
| 14  || || 1 || mA|| ||
 
|-
 
|-
| 8 || || || 1 || 25cm || amps || In ||
+
| 15  || || 1 || mA|| ||
 +
|}
 +
 
 +
==Experiment==
 +
 
 +
85 Nanodot OSLs for use (dose not include OSLs from reproducibility study)
 +
 
 +
- upper limit of OSLs is 15Gy, want to be around 7.5Gy with multiple pulses
 +
 
 +
Will talk to engineers about double pulsing and guaranteeing number of pulses and update.
 +
 
 +
===Table===
 +
 
 +
:{| border="2" style="text-align:center;" |cellpadding="20" cellspacing="0
 
|-
 
|-
| 9 || || || 1 || 25cm || amps || In ||
+
! scope="col" style="width: 50px;" | Shot #
 +
! scope="col" style="width: 120px;" | Number of Pulses
 +
! scope="col"| Number of OSLs
 +
! scope="col" style="width: 150px;" | Beam Current
 +
! scope="col" style="width: 150px;" | Aluminum Brick
 +
! scope="col" style="width: 150px;" | Dose/Pulse
 +
! scope="col" style="width: 150px;" | Expected Dose/Pulse
 
|-
 
|-
| 10 || ||  || 1 || 25cm || amps || In ||
+
| ||  || 1 || mA || Out || ||  
 
|-
 
|-
| 11 ||  || || 10 || 25cm || amps || Out ||
+
| 2 ||  || 1 || mA || Out || ||
 
|-
 
|-
| 12 || || || 10 || 25cm || amps || Out ||
+
| 3|| || 1 || mA || Out  || ||  
 
|-
 
|-
| 13 || || || 10 || 25cm || amps || Out ||
+
| 4 || || 1 || mA || Out  || ||  
 
|-
 
|-
| 14 || || || 10 || 25cm || amps || Out ||
+
| 5 || || 1 || mA || Out  || ||  
 
|-
 
|-
| 15 || || || 10 || 25cm || amps || Out ||
+
| 6 || || 1 || mA || Out  || ||  
 
|-
 
|-
| 16 || || || 10 || 25cm || amps || In ||
+
| 7 || || 16 || mA || In || ||  
 
|-
 
|-
| 17 ||  ||  || 15 || 25cm || amps || In ||
+
| 8 || || 16 ||  mA || In || ||  
 +
|-
 +
| 9 || || 16 || mA || Out || ||
 +
|-
 +
| 10 || || 16 || mA || Out || ||
 +
|-
 +
| 11 || || 16 || mA || Out || ||  
 
|-
 
|-
 
|}
 
|}
  
==Calculations==
+
=[[Absorbed Dose Information]]=
 +
 
 +
Titanium window = 0.5mm thick. Radius = 23.813mm
 +
 
 +
Air gap between Titanium window and glass slide = 45mm
 +
 
 +
Glass slide Thickness = 1mm
 +
 
 +
==[[5mA, 100ns pulse width, 100cm from beam pipe with Titanium window]]==
 +
 
 +
==[[25mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]==
 +
 
 +
==[[10mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]==
 +
 
 +
==[[100mA, 100ns pulse width, 100cm from beam pipe, with Titanium window]]==
 +
 
 +
==[[25mA, 100ns pulse width, 50cm from beam pipe, tungsten target with aluminum beamstop]]==
 +
 
 +
----
 +
 
 +
==[[100mA, 100ns pulse width, 25cm from beam pipe]]==
 +
 
 +
==[[25mA, 100ns pulse width, 25cm from beam pipe]]==
 +
 
 +
==[[25mA, 100ns pulse width, 50cm from beam pipe]]==
  
Assuming <math>100\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
 
  
Then <math>100\frac{mA}{pulse}=100\frac{mC}{s*pulse}=0.1\frac{C}{s*pulse}</math>
+
----
  
<math>0.1\frac{C}{s*pulse}(100ns)=10*10^{-9}\frac{C}{pulse}</math>
+
Low Dose Line: Dose = (0.11 +/- 0.01)(PMT Counts) + (119.29 +/- 29.08)
  
<math>10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}</math>
+
High Dose Line: Dose = (1.54 +/- 0.06)(PMT Counts) + (1004.80 +/- 1006.24)
  
OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
 
  
Mass of a single OSL crystal: <math>(\pi(0.501)^{2}*(0.03))*(3.9698)=0.0234777g</math>
+
Peak Current: <math>50\frac{mA}{pulse}</math>  
  
==[[Absorbed Dose Information]]==
+
Pulse Width: <math>500ns</math>
  
==Quartz==
 
  
<math>\frac{1}{1000}</math> of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.
+
<math>50\frac{mA}{pulse}=50\frac{mC}{s*pulse}=0.050\frac{C}{s*pulse}</math>
 +
 
 +
<math>0.050\frac{C}{s*pulse}(500ns)=2.5*10^{-8}\frac{C}{pulse}</math>
 +
 
 +
<math>2.5*10^{-8}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{11}\frac{e-}{pulse}</math>
  
Deposited Energy: <math>4.71875*10^{8} MeV</math>
 
  
Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
 
  
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(2.54))*(2.32)=29.8593g</math>
 
  
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>4.71875*10^{12} MeV</math>
 
 
----
 
----
 
[[Thesis]]
 
[[Thesis]]
 +
 +
[[May 31st 2018 - 25b 0 degree port]]

Latest revision as of 01:41, 27 June 2018

Beam Line info

Machine: 25b Linac

0[math]°[/math] port

Beam Energy: 8 MeV

Rep Rate: Max (150Hz?)

Pulse Width: 100ns

Run Plan

To find operating point

- Will use 15 OSLs from reproducibility study to make sure that dose is within acceptable range

Table

Start at 7am

Shot # Number of Pulses Number of OSLs Beam Current Dose/pulse Expected Dose/pulse
1 80 1 50 mA
2 1 mA
3 1 mA
4 1 mA
5 1 mA
6 1 mA
7 1 mA
8 1 mA
9 1 mA
10 1 mA
11 1 mA
12 1 mA
13 1 mA
14 1 mA
15 1 mA

Experiment

85 Nanodot OSLs for use (dose not include OSLs from reproducibility study)

- upper limit of OSLs is 15Gy, want to be around 7.5Gy with multiple pulses

Will talk to engineers about double pulsing and guaranteeing number of pulses and update.

Table

Shot # Number of Pulses Number of OSLs Beam Current Aluminum Brick Dose/Pulse Expected Dose/Pulse
1 1 mA Out
2 1 mA Out
3 1 mA Out
4 1 mA Out
5 1 mA Out
6 1 mA Out
7 16 mA In
8 16 mA In
9 16 mA Out
10 16 mA Out
11 16 mA Out

Absorbed Dose Information

Titanium window = 0.5mm thick. Radius = 23.813mm

Air gap between Titanium window and glass slide = 45mm

Glass slide Thickness = 1mm

5mA, 100ns pulse width, 100cm from beam pipe with Titanium window

25mA, 100ns pulse width, 100cm from beam pipe, with Titanium window

10mA, 100ns pulse width, 100cm from beam pipe, with Titanium window

100mA, 100ns pulse width, 100cm from beam pipe, with Titanium window

25mA, 100ns pulse width, 50cm from beam pipe, tungsten target with aluminum beamstop


100mA, 100ns pulse width, 25cm from beam pipe

25mA, 100ns pulse width, 25cm from beam pipe

25mA, 100ns pulse width, 50cm from beam pipe


Low Dose Line: Dose = (0.11 +/- 0.01)(PMT Counts) + (119.29 +/- 29.08)

High Dose Line: Dose = (1.54 +/- 0.06)(PMT Counts) + (1004.80 +/- 1006.24)


Peak Current: [math]50\frac{mA}{pulse}[/math]

Pulse Width: [math]500ns[/math]


[math]50\frac{mA}{pulse}=50\frac{mC}{s*pulse}=0.050\frac{C}{s*pulse}[/math]

[math]0.050\frac{C}{s*pulse}(500ns)=2.5*10^{-8}\frac{C}{pulse}[/math]

[math]2.5*10^{-8}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{11}\frac{e-}{pulse}[/math]




Thesis

May 31st 2018 - 25b 0 degree port