[math]\textbf{\underline{Navigation}}[/math]
[math]\vartriangleleft [/math]
[math]\triangle [/math]
[math]\vartriangleright [/math]

# Limits based on Mandelstam Variables

Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:

[math]s+t+u=(4(m^2+ p \ ^{*2}))+(-2 p \ ^{*2}(1-cos\ \theta))+(-2 p \ ^{*2}(1+cos\ \theta))[/math]

[math]s+t+u \equiv 4m^2[/math]

Since

[math]s \equiv 4(m^2+\vec p \ ^{*2})[/math]

This implies

[math]s \ge 4m^2[/math]

In turn, this implies

[math] t \le 0 \qquad u \le 0[/math]

At the condition both t and u are equal to zero, we find

[math] t = 0 \qquad u = 0[/math]

[math]-2 p \ ^{*2}(1-cos\ \theta) = 0 \qquad -2 p \ ^{*2}(1+cos\ \theta) = 0[/math]

[math](-2 p \ ^{*2}+2 p \ ^{*2}cos\ \theta) = 0 \qquad (-2 p \ ^{*2}-2 p \ ^{*2}cos\ \theta) = 0[/math]

[math]2 p \ ^{*2}cos\ \theta = 2 p \ ^{*2} \qquad -2 p \ ^{*2}cos\ \theta = 2 p \ ^{*2}[/math]

[math]cos\ \theta = 1 \qquad cos\ \theta = -1[/math]

[math]|Rightarrow \theta_{t=0} = arccos \ 1=0^{\circ} \qquad \theta_{u=0} = arccos \ -1=180^{\circ}[/math]