Limits based on Mandelstam Variables

From New IAC Wiki
Jump to navigation Jump to search

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Limits based on Mandelstam Variables

Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:

[math]s+t+u=(4(m^2+ p \ ^{*2}))+(-2 p \ ^{*2}(1-cos\ \theta))+(-2 p \ ^{*2}(1+cos\ \theta))[/math]

[math]s+t+u \equiv 4m^2[/math]


[math]s \equiv 4(m^2+\vec p \ ^{*2})[/math]

This implies

[math]s \ge 4m^2[/math]

In turn, this implies

[math] t \le 0 \qquad u \le 0[/math]