Difference between revisions of "Limits based on Mandelstam Variables"

From New IAC Wiki
Jump to navigation Jump to search
Line 14: Line 14:
<center><math>s+t+u=(4(m^2+\vec p \ ^{*2}))+(-2 p \ _1^{*2}(1-cos\ \theta))+(-2 p \ _1^{*2}(1+cos\ \theta))</math></center>
<center><math>s+t+u=(4(m^2+\vec p \ ^{*2}))+(-2 p \ ^{*2}(1-cos\ \theta))+(-2 p \ ^{*2}(1+cos\ \theta))</math></center>
<center><math>s+t+u \equiv 4m^2</math></center>
<center><math>s+t+u \equiv 4m^2</math></center>

Revision as of 23:30, 9 June 2017


[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

Limits based on Mandelstam Variables

Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:

[math]s+t+u=(4(m^2+\vec p \ ^{*2}))+(-2 p \ ^{*2}(1-cos\ \theta))+(-2 p \ ^{*2}(1+cos\ \theta))[/math]

[math]s+t+u \equiv 4m^2[/math]