Difference between revisions of "Limits based on Mandelstam Variables"

From New IAC Wiki
Jump to navigation Jump to search
Line 61: Line 61:
 
<center><math>\Rightarrow  \theta_{t=0} = \arccos \ 1=0^{\circ}  \qquad \theta_{u=0} = \arccos \ -1=180^{\circ}</math></center>
 
<center><math>\Rightarrow  \theta_{t=0} = \arccos \ 1=0^{\circ}  \qquad \theta_{u=0} = \arccos \ -1=180^{\circ}</math></center>
  
Holding u constant at zero we can find the maximum of t
+
Holding u constant at zero we can find the minimum of t
  
  
Line 74: Line 74:
 
<center><math>t_{max}=4m^2-4m^2- 4p \ ^{*2}</math></center>
 
<center><math>t_{max}=4m^2-4m^2- 4p \ ^{*2}</math></center>
  
 +
 +
 +
 +
The maximum transfer of momentum would be
  
  
Line 80: Line 84:
  
  
<center><math>-2 p \ ^{*2}(1-cos\ \theta)=-4p \ ^{*2}</math></center>
+
 
 +
<center><math>-2 p \ ^{*2}(1-cos\ \theta_{t=max})=-4p \ ^{*2}</math></center>
  
  
  
<center><math>(1-cos\ \theta)=2</math></center>
+
<center><math>(1-cos\ \theta_{t=max})=2</math></center>
  
  
  
<center><math>-cos\ \theta=1</math></center>
+
<center><math>-cos\ \theta_{t=max}=1</math></center>
  
  

Revision as of 21:48, 12 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]


Limits based on Mandelstam Variables

Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:


[math]s+t+u=(4(m^2+ p \ ^{*2}))+(-2 p \ ^{*2}(1-cos\ \theta))+(-2 p \ ^{*2}(1+cos\ \theta))[/math]


[math]s+t+u \equiv 4m^2[/math]


Since

[math]s \equiv 4(m^2+\vec p \ ^{*2})[/math]


This implies

[math]s \ge 4m^2[/math]


In turn, this implies


[math] t \le 0 \qquad u \le 0[/math]


At the condition both t and u are equal to zero, we find


[math] t = 0 \qquad u = 0[/math]


[math]-2 p \ ^{*2}(1-cos\ \theta) = 0 \qquad -2 p \ ^{*2}(1+cos\ \theta) = 0[/math]


[math](-2 p \ ^{*2}+2 p \ ^{*2}cos\ \theta) = 0 \qquad (-2 p \ ^{*2}-2 p \ ^{*2}cos\ \theta) = 0[/math]


[math]2 p \ ^{*2}cos\ \theta = 2 p \ ^{*2} \qquad -2 p \ ^{*2}cos\ \theta = 2 p \ ^{*2}[/math]


[math]\cos\ \theta = 1 \qquad \cos\ \theta = -1[/math]


[math]\Rightarrow \theta_{t=0} = \arccos \ 1=0^{\circ} \qquad \theta_{u=0} = \arccos \ -1=180^{\circ}[/math]

Holding u constant at zero we can find the minimum of t


[math]s+t_{max} \equiv 4m^2[/math]


[math]\Rightarrow t_{max}=4m^2-s[/math]


[math]t_{max}=4m^2-4m^2- 4p \ ^{*2}[/math]



The maximum transfer of momentum would be


[math]t_{max}=-4p \ ^{*2}[/math]



[math]-2 p \ ^{*2}(1-cos\ \theta_{t=max})=-4p \ ^{*2}[/math]


[math](1-cos\ \theta_{t=max})=2[/math]


[math]-cos\ \theta_{t=max}=1[/math]


[math] \theta_{t=max} \equiv \arccos -1[/math]


The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°). We find as expected for u=0 at [math]\theta=180^{\circ}[/math]

[math]\theta_{t=max}=180^{\circ}[/math]