Difference between revisions of "Lab 23 TF EIM"

From New IAC Wiki
Jump to navigation Jump to search
 
(18 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
[[File:TF_EIM_Lab23.png| 200 px]]
 
[[File:TF_EIM_Lab23.png| 200 px]]
  
2. insert a 0.1 <math>\mu</math>F capacitor between ground and the OP power supply input pin.
+
Here is the data sheet for the 741 Op Amp
 +
 
 +
[[File:LM741CN_OpAmp.pdf]]
 +
 
 +
 
 +
Use <math>R_1 = 1k\Omega</math> and <math>R_2 = 10 k\Omega</math> as starting values.
 +
 
 +
2. Insert a 0.01 <math>\mu</math>F capacitor between ground and both Op Amp power supply input pins.  The Power supply connections for the Op amp are not shown in the above circuit diagram, check the data sheet.
  
 
= Gain measurements=
 
= Gain measurements=
  
#Measure the gain as a function of frequency between 100 Hz and 2 MHz for three values of R_2 = 10 k<math>\Omega</math>, 100 k<math>\Omega</math>, 1M<math>\Omega</math>.
+
1.) Measure the gain as a function of frequency between 100 Hz and 2 MHz for three values of <math>R_2</math> = 10 k<math>\Omega</math>, 100 k<math>\Omega</math>, 1M<math>\Omega</math>.  Keep <math>R_1</math> at <math>1k\Omega</math>.
#Graph  the above measurements with the Gain in units of decibels (dB) and with a logarithmic scale for the frequency axis.
+
 
 +
2.)Graph  the above measurements with the Gain in units of decibels (dB) and with a logarithmic scale for the frequency axis.
  
 
=Impedance=
 
=Impedance=
Line 20: Line 28:
 
= <math>V_{io}</math> and <math>I_{B}</math>=
 
= <math>V_{io}</math> and <math>I_{B}</math>=
  
;<math>V_{out}= -\frac{R_1}{R_2} V_1 + \left ( 1 + \frac{R_1}{R_2}\right)V_{io}  + R_2 I_B</math>
+
;<math>V_{out}= -\frac{R_2}{R_1} V_1 + \left ( 1 + \frac{R_2}{R_1}\right)V_{io}  + R_2 I_B</math>
  
 
Use the above equation and two measurements of <math>V_{out}</math>, <math>R_1</math>, and <math>R_2</math>  to extract <math>V_{io}</math> and <math>I_B</math>.
 
Use the above equation and two measurements of <math>V_{out}</math>, <math>R_1</math>, and <math>R_2</math>  to extract <math>V_{io}</math> and <math>I_B</math>.
Line 26: Line 34:
 
#measure <math>V_{out}</math> for <math>R_1</math> = 1 k<math>\Omega</math>, <math>R_2</math> = 100 k<math>\Omega</math>, and<math> V_{in}</math>=0 (grounded).
 
#measure <math>V_{out}</math> for <math>R_1</math> = 1 k<math>\Omega</math>, <math>R_2</math> = 100 k<math>\Omega</math>, and<math> V_{in}</math>=0 (grounded).
 
#measure <math>V_{out}</math> for <math>R_1</math> = 10 k<math>\Omega</math>, <math>R_2</math> = 1 M<math>\Omega</math>, and<math> V_{in}</math>=0 (grounded).
 
#measure <math>V_{out}</math> for <math>R_1</math> = 10 k<math>\Omega</math>, <math>R_2</math> = 1 M<math>\Omega</math>, and<math> V_{in}</math>=0 (grounded).
#You can now construct 2 equations with 2 unknowns <math>V_{out}</math> and <math>I_B</math>.
+
#You can now construct 2 equations with 2 unknowns <math>V_{io}</math> and <math>I_B</math>.
  
 
= <math>I_{io}</math>=
 
= <math>I_{io}</math>=
  
Now we will put in a pull up resistor R_3 as shown below.
+
Now we will put in a pull up resistor <math>R_3= \frac{R_1 R_2}{R_1+R_2}</math>  as shown below.
  
 
[[File:TF_EIM_Lab23a.png | 200 px]]
 
[[File:TF_EIM_Lab23a.png | 200 px]]
Line 36: Line 44:
 
Instead of the current <math>I_B</math> we have the current <math>I_{io}</math>
 
Instead of the current <math>I_B</math> we have the current <math>I_{io}</math>
  
;<math>V_{out}= -\frac{R_1}{R_2} V_1 + \left ( 1 + \frac{R_1}{R_2}\right)V_{io}  + R_2 I_{io}</math>
+
;<math>V_{out}= -\frac{R_2}{R_1} V_1 + \left ( 1 + \frac{R_2}{R_1}\right)V_{io}  + R_2 I_{io}</math>
  
 
Use the same technique and resistors from the previous section to construct 2 equations and 2 unknowns and extract <math>I_{io}</math>, keep <math>V_{in}</math>=0.
 
Use the same technique and resistors from the previous section to construct 2 equations and 2 unknowns and extract <math>I_{io}</math>, keep <math>V_{in}</math>=0.
Line 44: Line 52:
 
[[File:TF_EIM_Lab23_b.png | 200 px]]
 
[[File:TF_EIM_Lab23_b.png | 200 px]]
  
#Construct the offset null circuit below.
+
#Construct the offset null circuit above.
 
#Adjust the potentiometer  to minimize <math>V_{out}</math> with <math>V_{in}=0</math>.
 
#Adjust the potentiometer  to minimize <math>V_{out}</math> with <math>V_{in}=0</math>.
 
#Use a scope to measure the output noise.
 
#Use a scope to measure the output noise.
 +
 +
 +
=Slew rate=
 +
 +
Measure the slew and compare it to the factory spec.
 +
 +
=Power Supply Rejection Ratio=
 +
#Set <math>V_{in}</math> = 0.
 +
#Measure <math>\Delta V_{out}</math> while changing <math>\Delta V_{cc}</math>
 +
 +
=Output voltage RMS noise <math>\Delta V_{out}^{RMS}</math>=
 +
 +
Measure the RMS noise in <math>V_{out}</math> when <math>V_{in}</math> = 0 . 
  
 
= Capacitors=
 
= Capacitors=
Line 54: Line 75:
 
==Capacitor in parallel with <math>R_2</math>==
 
==Capacitor in parallel with <math>R_2</math>==
  
 +
[[File:TF_EIM_Lab23_c.png | 200 px]]
  
 
#Select a capacitor such that<math> \frac{1}{\omega C_2} \approx R_2</math> when <math>\omega</math>= 10 kHz.
 
#Select a capacitor such that<math> \frac{1}{\omega C_2} \approx R_2</math> when <math>\omega</math>= 10 kHz.
#Add the capacitor in parallel to <math>R_2</math> so you have the circuit shown below.
+
#Add the capacitor in parallel to <math>R_2</math> so you have the circuit shown above.
 
 
 
 
[[File:TF_EIM_Lab23_c.png | 200 px]]
 
 
 
 
#Use a pulse generator to input a sinusoidal voltage <math>V_{in}</math>
 
#Use a pulse generator to input a sinusoidal voltage <math>V_{in}</math>
 
# Measure the Gain as a function of the <math>V_{in}</math> frequency and plot it.
 
# Measure the Gain as a function of the <math>V_{in}</math> frequency and plot it.
  
 
==Capacitor in series with R_1==
 
==Capacitor in series with R_1==
 
#Select a capacitor such that<math> \frac{1}{\omega C_2} \approx R_1</math> when <math>\omega</math>= 1 kHz.
 
#Add the capacitor in series to <math>R_1</math> so you have the circuit shown below.
 
  
 
[[File:TF_EIM_Lab23_d.png | 200 px]]
 
[[File:TF_EIM_Lab23_d.png | 200 px]]
  
 +
#Select a capacitor such that<math> \frac{1}{\omega C_2} \approx R_1</math> when <math>\omega</math>= 1 kHz.
 +
#Add the capacitor in series to <math>R_1</math> so you have the circuit shown above.
 
#Use a pulse generator to input a sinusoidal voltage <math>V_{in}</math>
 
#Use a pulse generator to input a sinusoidal voltage <math>V_{in}</math>
 
#Measure the Gain as a function of the <math>V_{in}</math> frequency and plot it.
 
#Measure the Gain as a function of the <math>V_{in}</math> frequency and plot it.
  
=Slew rate=
 
 
Measure the slew and compare it to the factory spec.
 
 
=Power Supply Rejection Ratio=
 
#Set V_{in} = 0.
 
#Measure <math>V_{out}</math> while changing <math>V_{cc}</math>
 
 
=Output voltage RMS noise <math>\Delta V_{out}^{RMS}</math>=
 
  
 
[[Forest_Electronic_Instrumentation_and_Measurement]]
 
[[Forest_Electronic_Instrumentation_and_Measurement]]

Latest revision as of 20:48, 22 April 2011

Inverting OP Amp

1. Construct the inverting amplifier according to the wiring diagram below.

TF EIM Lab23.png

Here is the data sheet for the 741 Op Amp

File:LM741CN OpAmp.pdf


Use [math]R_1 = 1k\Omega[/math] and [math]R_2 = 10 k\Omega[/math] as starting values.

2. Insert a 0.01 [math]\mu[/math]F capacitor between ground and both Op Amp power supply input pins. The Power supply connections for the Op amp are not shown in the above circuit diagram, check the data sheet.

Gain measurements

1.) Measure the gain as a function of frequency between 100 Hz and 2 MHz for three values of [math]R_2[/math] = 10 k[math]\Omega[/math], 100 k[math]\Omega[/math], 1M[math]\Omega[/math]. Keep [math]R_1[/math] at [math]1k\Omega[/math].

2.)Graph the above measurements with the Gain in units of decibels (dB) and with a logarithmic scale for the frequency axis.

Impedance

Input Impedance

  1. Measure [math]R_{in}[/math] for the 10 fold and 100 fold amplifier at ~100 Hz and 10 kHz frequency.

Output Impedance

  1. Measure [math]R_{out}[/math] for the 10 fold and 100 fold amplifier at ~100 Hz and 10 kHz frequency. Be sure to keep the output ([math]V_{out}[/math]) undistorted

[math]V_{io}[/math] and [math]I_{B}[/math]

[math]V_{out}= -\frac{R_2}{R_1} V_1 + \left ( 1 + \frac{R_2}{R_1}\right)V_{io} + R_2 I_B[/math]

Use the above equation and two measurements of [math]V_{out}[/math], [math]R_1[/math], and [math]R_2[/math] to extract [math]V_{io}[/math] and [math]I_B[/math].

  1. measure [math]V_{out}[/math] for [math]R_1[/math] = 1 k[math]\Omega[/math], [math]R_2[/math] = 100 k[math]\Omega[/math], and[math] V_{in}[/math]=0 (grounded).
  2. measure [math]V_{out}[/math] for [math]R_1[/math] = 10 k[math]\Omega[/math], [math]R_2[/math] = 1 M[math]\Omega[/math], and[math] V_{in}[/math]=0 (grounded).
  3. You can now construct 2 equations with 2 unknowns [math]V_{io}[/math] and [math]I_B[/math].

[math]I_{io}[/math]

Now we will put in a pull up resistor [math]R_3= \frac{R_1 R_2}{R_1+R_2}[/math] as shown below.

TF EIM Lab23a.png

Instead of the current [math]I_B[/math] we have the current [math]I_{io}[/math]

[math]V_{out}= -\frac{R_2}{R_1} V_1 + \left ( 1 + \frac{R_2}{R_1}\right)V_{io} + R_2 I_{io}[/math]

Use the same technique and resistors from the previous section to construct 2 equations and 2 unknowns and extract [math]I_{io}[/math], keep [math]V_{in}[/math]=0.

The offset Null Circuit

TF EIM Lab23 b.png

  1. Construct the offset null circuit above.
  2. Adjust the potentiometer to minimize [math]V_{out}[/math] with [math]V_{in}=0[/math].
  3. Use a scope to measure the output noise.


Slew rate

Measure the slew and compare it to the factory spec.

Power Supply Rejection Ratio

  1. Set [math]V_{in}[/math] = 0.
  2. Measure [math]\Delta V_{out}[/math] while changing [math]\Delta V_{cc}[/math]

Output voltage RMS noise [math]\Delta V_{out}^{RMS}[/math]

Measure the RMS noise in [math]V_{out}[/math] when [math]V_{in}[/math] = 0 .

Capacitors

Revert back to the pull up resistor

Capacitor in parallel with [math]R_2[/math]

TF EIM Lab23 c.png

  1. Select a capacitor such that[math] \frac{1}{\omega C_2} \approx R_2[/math] when [math]\omega[/math]= 10 kHz.
  2. Add the capacitor in parallel to [math]R_2[/math] so you have the circuit shown above.
  3. Use a pulse generator to input a sinusoidal voltage [math]V_{in}[/math]
  4. Measure the Gain as a function of the [math]V_{in}[/math] frequency and plot it.

Capacitor in series with R_1

TF EIM Lab23 d.png

  1. Select a capacitor such that[math] \frac{1}{\omega C_2} \approx R_1[/math] when [math]\omega[/math]= 1 kHz.
  2. Add the capacitor in series to [math]R_1[/math] so you have the circuit shown above.
  3. Use a pulse generator to input a sinusoidal voltage [math]V_{in}[/math]
  4. Measure the Gain as a function of the [math]V_{in}[/math] frequency and plot it.


Forest_Electronic_Instrumentation_and_Measurement