Difference between revisions of "Lab 23 TF EIM"

From New IAC Wiki
Jump to navigation Jump to search
Line 31: Line 31:
 
Instead of the current <math>I_B</math> we have the current <math>I_{io}</math>
 
Instead of the current <math>I_B</math> we have the current <math>I_{io}</math>
  
;<math>V_{out}= -\frac{R_1}{R_2} V_1 + \left ( 1 + \frac{R_1}{R_2}\right)V_{io}  + R_2 I_{i}</math>
+
;<math>V_{out}= -\frac{R_1}{R_2} V_1 + \left ( 1 + \frac{R_1}{R_2}\right)V_{io}  + R_2 I_{io}</math>
 +
 
 +
Use the same technique and resistors from the previous section to construct 2 equations and 2 unknowns and extract <math>I_{io}</math>, keep <math>V_{in}</math>=0.
 +
 
 +
= The offset Null Circuit=
 +
 +
#Construct the offset null circuit below.
 +
#Adjust the potentiometer  to minimize <math>V_{out}</math> with <math>V_{in}=0</math>.
 +
#Use a scope to measure the output noise.
 +
 
 +
= Capacitors=
 +
 
 +
#Revert back to the pull up resistor
  
Use the same technique and resistors from the previous section to construct 2 equations and 2 unknowns and extract <math>I_{io}</math>
 
  
 
[[Forest_Electronic_Instrumentation_and_Measurement]]
 
[[Forest_Electronic_Instrumentation_and_Measurement]]

Revision as of 03:36, 3 November 2010

Inverting OP Amp

  1. Construct the inverting amplifier according to the wiring diagram below.
  2. insert a 0.1 [math]\mu[/math]F capacitor between ground and the OP power supply input pin.

Gain measurements

  1. Measure the gain as a function of frequency between 100 Hz and 2 MHz for three values of R_2 = 10 k[math]\Omega[/math], 100 k[math]\Omega[/math], 1M[math]\Omega[/math].
  2. Graph the above measurements with the Gain in units of decibels (dB) and with a logarithmic scale for the frequency axis.

Impedance

Input Impedance

  1. Measure [math]R_{in}[/math] for the 10 fold and 100 fold amplifier at ~100 Hz and 10 kHz frequency.

Output Impedance

  1. Measure [math]R_{out}[/math] for the 10 fold and 100 fold amplifier at ~100 Hz and 10 kHz frequency. Be sure to keep the output ([math]V_{out}[/math]) undistorted

[math]V_{io}[/math] and [math]I_{B}[/math]

[math]V_{out}= -\frac{R_1}{R_2} V_1 + \left ( 1 + \frac{R_1}{R_2}\right)V_{io} + R_2 I_B[/math]

Use the above equation and two measurements of [math]V_{out}[/math], [math]R_1[/math], and [math]R_2[/math] to extract [math]V_{io}[/math] and [math]I_B[/math].

  1. measure [math]V_{out}[/math] for [math]R_1[/math] = 1 k[math]\Omega[/math], [math]R_2[/math] = 100 k[math]\Omega[/math], and[math] V_{in}[/math]=0 (grounded).
  2. measure [[File:V_{out}]] for [math]R_1[/math] = 10 k[math]\Omega[/math], [math]R_2[/math] = 1 M[math]\Omega[/math], and[math] V_{in}[/math]=0 (grounded).
  3. You can now construct 2 equations with 2 unknowns [math]V_{out}[/math] and [math]I_B[/math].

[math]I_{io}[/math]

Now we will put in a pull up resistor R_3 as shown below.

Instead of the current [math]I_B[/math] we have the current [math]I_{io}[/math]

[math]V_{out}= -\frac{R_1}{R_2} V_1 + \left ( 1 + \frac{R_1}{R_2}\right)V_{io} + R_2 I_{io}[/math]

Use the same technique and resistors from the previous section to construct 2 equations and 2 unknowns and extract [math]I_{io}[/math], keep [math]V_{in}[/math]=0.

The offset Null Circuit

  1. Construct the offset null circuit below.
  2. Adjust the potentiometer to minimize [math]V_{out}[/math] with [math]V_{in}=0[/math].
  3. Use a scope to measure the output noise.

Capacitors

  1. Revert back to the pull up resistor


Forest_Electronic_Instrumentation_and_Measurement