Difference between revisions of "Lab 13 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 47: Line 47:
 
|30 ||300||<math>I_C=100\ mA</math>, <math>V_{CE}=1.0\ V</math>  
 
|30 ||300||<math>I_C=100\ mA</math>, <math>V_{CE}=1.0\ V</math>  
 
|}
 
|}
 +
 +
  
 
'''2.) Construct the circuit below according to the type of transistor you have. '''
 
'''2.) Construct the circuit below according to the type of transistor you have. '''

Revision as of 07:06, 11 March 2011

Go Back to All Lab Reports


DC Bipolar Transistor Curves

Data sheet for transistors.

Media:2N3904.pdfMedia:2N3906.pdf

2N3904 PinOuts.png2N3906 PinOuts.png


Using 2N3904 is more srtaight forward in this lab.

Transistor circuit

1.) Identify the type (n-p-n or p-n-p) of transistor you are using and fill in the following specifications.


I am going to use n-p-n transistor 2N3904. Below are some specifications from data shits for this type of transistor:

Value Description
[math]V_{(BR)CEO} = 40\ V[/math] Collector-Base breakdown voltage
[math]V_{(BR)EBO} = 6\ V[/math] Emitter-Base Breakdown Voltage
[math]V_{(BR)CEO} = 40\ V[/math] Maximum Collector-Emitter Voltage
[math]V_{(BR)CBO} = 60\ V[/math] Maximum Collector-Emitter Voltage
[math]I_C = 200\ mA[/math] Maximum Collector Current - Continuous
[math]P = 625\ mW[/math] Transistor Power rating([math]P_{Max}[/math])
[math]h_{FE}\ min \ [/math] [math]h_{FE}\ max \ [/math] [math]I_C[/math], [math]V_{CE}[/math]
40 300 [math]I_C=0.1\ mA[/math], [math]V_{CE}=1.0\ V[/math]
70 300 [math]I_C=1\ mA[/math], [math]V_{CE}=1.0\ V[/math]
100 300 [math]I_C=10\ mA[/math], [math]V_{CE}=1.0\ V[/math]
60 300 [math]I_C=50\ mA[/math], [math]V_{CE}=1.0\ V[/math]
30 300 [math]I_C=100\ mA[/math], [math]V_{CE}=1.0\ V[/math]


2.) Construct the circuit below according to the type of transistor you have.

TF EIM Lab13a Circuit.pngTF EIM Lab13 Circuit.png


Let [math]R_E = 100 \Omega[/math].

[math]V_{CC} \lt 5 Volts[/math] variable power supply

[math]V_{BE}= 1\ V[/math].

Find the resistors you need to have

[math]I_B = 2 \mu A[/math] , [math]5 \mu A[/math] , and [math]10 \mu A[/math]

By measurements I was able to find that [math]V_{BE}= 0.6\ V[/math]. So I am going to use this value. Also let picks up [math]V_{BB}= 1.6\ V[/math]. So my current [math]I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{(1.6 - 0.6)\ V}{R_B} = \frac{1.0\ V}{R_B}[/math].

Now to get [math]I_B = 2\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{2\ \mu A} = 500\ k\Omega[/math]
    To get [math]I_B = 5\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{5\ \mu A} = 200\ k\Omega[/math]
    To get [math]I_B = 10\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{10\ \mu A} = 100\ k\Omega[/math]



3.) Measure the emitter current [math]I_E[/math] for several values of [math]V_{CE}[/math] by changing [math]V_{CC}[/math] such that the base current [math]I_B = 2 \mu[/math] A is constant. [math]I_B \approx \frac{V_{BB}-V_{BE}}{R_B}[/math]


I used:

[math]R_1 = (197.7 \pm 0.5)\ k\Omega [/math]
[math]R_1 = (197.5 \pm 0.5)\ k\Omega [/math]
[math]R_1 = (99.5 \pm 0.5)\ k\Omega [/math]
[math]R_B = (R_1 + R_2 + R_3) = (494.7 \pm 3.1)\ k\Omega [/math]

and

[math]R_E = (100.0 \pm 0.5)\ Omega [/math]


Below is the table with my measurements and currents and power calculation.

Here:

[math]I_{E} = \frac{V_E}{R_E}[/math]
[math]I_{B} = \frac{V_{BB}-V_B}{R_B}[/math]
[math]P_{max} = I_C \cdot V_{EC} = (I_E - I_B) \cdot V_{EC} [/math] 


[math]V_{CC}[/math] [math]V_{B}[/math] [math]V_{BB}[/math] [math]V_{EC}[/math] [math]V_{E}[/math] [math]R_{E}[/math] [math]R_{B}[/math] [math]I_{E}[/math] [math]I_{B}[/math] [math]P_{max}[/math]
mV mV V mV mV [math]\Omega[/math] k[math]\Omega[/math] mA [math]\mu A[/math] [math]\mu W[/math]
[math]41.5\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]0.0\pm 1[/math] [math]40\pm 2[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 0.40±0.02 2.02±0.18 0.00±0.40
[math]106.7\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]4.0\pm 1[/math] [math]100\pm 5[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 1.00±0.05 2.02±0.18 4.00±1.02
[math]142.0\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]10.0\pm 1[/math] [math]140\pm 5[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 1.40±0.05 2.02±0.18 14.00±1.49
[math]170.8\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]16.0\pm 1[/math] [math]170\pm 5[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 1.70±0.05 2.02±0.18 27.20±1.88
[math]204.9\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]22.0\pm 1[/math] [math]200\pm 5[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 2.00±0.05 2.02±0.18 44.00±2.29
[math]233.0\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]26.0\pm 1[/math] [math]240\pm 10[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 2.4±0.10 2.02±0.18 62.40±3.55
[math]266.2\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]28.0\pm 1[/math] [math]260\pm 10[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 2.60±0.10 2.02±0.18 72.80±3.84
[math]296.1\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]29.0\pm 1[/math] [math]300\pm 10[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 3.00±0.10 2.02±0.18 87.00±4.20
[math]338.0\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]29.0\pm 1[/math] [math]340\pm 10[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 3.40±0.10 2.02±0.18 98.60±4.50
[math]406.0\pm 2.0[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]29.0\pm 1[/math] [math]400\pm 10[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 4.00±0.10 2.02±0.18 116.00±4.97
[math]554.0\pm 2.0[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]29.0\pm 1[/math] [math]560\pm 20[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 5.60±0.20 2.02±0.18 162.40±8.10
[math]809.0\pm 2.0[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]30.0\pm 1[/math] [math]800\pm 20[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 8.00±0.20 2.02±0.18 240.00±10.07
[math]1041.0\pm 2.0[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]30.0\pm 1[/math] [math]1000\pm 50[/math] [math]100\pm 0.5[/math] [math]494.7\pm 3.1[/math] 10.00±0.50 2.02±0.18 300.00±18.09


4.) Repeat the previous measurements for [math]I_B \approx 5 \mbox{ and } 10 \mu[/math] A. Remember to keep [math]I_CV_{CE} \lt P_{max}[/math] so the transistor doesn't burn out

V_{CC} V_B V_{BB} V_ {EC} V_ E R_E R_B I_E I_B
mV mV V mV mV [math]\Omega[/math] k[math]\Omega[/math] mA \muA


5.) Graph [math]I_C[/math] -vs- [math]V_{CE}[/math] for each value of [math]I_B[/math] and [math]V_{CC}[/math] above. (40 pnts)

Bellow is my plot for the case of [math]I_B = 2 \mu A[/math]

L13 2uA.png


Bellow is my plot for the case of [math]I_B = 5 \mu A[/math]


Bellow is my plot for the case of [math]I_B = 10 \mu A[/math]



6.) Overlay points from the transistor's data sheet on the graph in part 5.).(10 pnts)


Questions

  1. Compare your measured value of [math]h_{FE}[/math] or [math]\beta[/math] for the transistor to the spec sheet? (10 pnts)
  2. What is [math]\alpha[/math] for the transistor?(10 pnts)
  3. The base must always be more _________(________) than the emitter for a npn (pnp)transistor to conduct I_C.(10 pnts)
  4. For a transistor to conduct I_C the base-emitter junction must be ___________ biased.(10 pnts)
  5. For a transistor to conduct I_C the collector-base junction must be ___________ biased.(10 pnts)

Extra credit

Measure the Base-Emmiter breakdown voltage. (10 pnts)


I expect to see a graph [math](I_{B} -vs- V_{BE} )[/math] and a linear fit which is similar to the forward biased diode curves. Compare your result to what is reported in the data sheet.



Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement