Difference between revisions of "ISU Coloq 11-3-2014"

From New IAC Wiki
Jump to navigation Jump to search
 
(42 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
==Abstract==
 +
 +
ISU's intermediate energy nuclear physics group is presently involved in several fundamental physics measurements. This talk will describe a  program to measure the fractional polarization of down quarks in a nucleon using polarized electrons to probe polarized nucleon targets.  Quantum chromodynamcs (QCD) is a theory of the strong interaction; one of the four fundamental forces in nature.  QCD predicts that the down quark will carry all of the nucleon's spin and result in a fractional polarization of unity when the probe interacts with down quarks that carry all of the nucleon's momentum.  This theory contradicts the leading constituent quark model of the nucleon.  The world's current data set is unable to discriminate between QCD's prediction and the constituent quark model.    A description of this experimental program and the roles of ISU graduate students will be described.
  
 
==electron scattering (collisions) ==
 
==electron scattering (collisions) ==
Line 5: Line 8:
  
 
Inelastic : Only Conserve P
 
Inelastic : Only Conserve P
 +
 +
==Four Momentum==
 +
 +
Using Ryder 4-momentum tensor convention:  <math>P_{\mu} \equiv (E/c, -\vec{p}) \;\;\;\;\;  P^{\mu} \equiv (E/c, \vec{p})</math>
 +
 +
If I take the inner product of a particles four momentum with itself I get
 +
 +
<math>P_{\mu} P^{\mu} \equiv \left | \vec P \right |^2 = \left ( \frac{E}{c} \right )^2 - \vec{p} \cdot \vec{p} </math>
 +
 +
The Energy-Momentum relation
 +
 +
:<math>E^2 = (pc)^2 + (m_0c^2)^2</math>
 +
 +
:<math>\Rightarrow  P_{\mu} P^{\mu} = \left ( \frac{E}{c} \right )^2 - \vec{p} \cdot \vec{p}  = (m_0c)^2</math>
 +
 +
 +
The <math>\omega</math> and <math>\vec k</math> are the reciprocal quantities to <math>t</math> and <math>\vec r</math>
 +
 +
:<math>(t,\vec r) \rightarrow (\omega, \vec k)</math>
 +
 +
For a plane wave
 +
 +
<math>K^{\mu} \equiv (\omega, \vec k)</math>
 +
 +
Similarly
 +
 +
:<math>\Rightarrow  K_{\mu} K^{\mu} = \left ( \omega \right )^2 - \vec{k} \cdot \vec{k}  </math>
 +
 +
 +
The de Broglie relation <math>( p = \frac{h}{\lambda} )</math>
 +
 +
:<math>P_{\mu} = \hbar K_{\mu}</math>
 +
 +
 +
:<math>\Rightarrow K_{\mu}K^ {\mu}=\frac{P_{\mu}P^{\mu} }{ \hbar } = </math>
 +
:<math>\left ( \omega \right )^2 - \vec{k} \cdot \vec{k} = (m_0c)^2</math>
 +
 +
if its a massless particle (photon) then <math>m_0 = 0</math>
 +
 +
 +
:<math>\left ( \omega \right )^2 = \vec{k} \cdot \vec{k} </math>
  
 
==Definition of Momentum Transfer==
 
==Definition of Momentum Transfer==
Line 12: Line 56:
 
[[File:TF_Elastic_e-p_Feynman.png | 200 px]]
 
[[File:TF_Elastic_e-p_Feynman.png | 200 px]]
  
Using Ryder 4-momentum tensor convention:  <math>P_{\mu} \equiv (E/c, -\vec{p}) \;\;\;\;\;  P^{\mu} \equiv (E/c, \vec{p})</math>
 
  
 
<math>q_\mu \equiv (\omega, \vec{q})</math>
 
<math>q_\mu \equiv (\omega, \vec{q})</math>
Line 77: Line 120:
  
 
<math>E_X^2 - P_X^2 \equiv W^2 = (E_i^2 - k_i^2) + (E_f^2-k_f^2) + M_p^2 + 2M_p(E_i - E_f) -2(E_iE_f-\vec{k_i}\cdot \vec{k_f})</math>
 
<math>E_X^2 - P_X^2 \equiv W^2 = (E_i^2 - k_i^2) + (E_f^2-k_f^2) + M_p^2 + 2M_p(E_i - E_f) -2(E_iE_f-\vec{k_i}\cdot \vec{k_f})</math>
 +
 +
:<math>(E_i^2 - k_i^2) + (E_f^2-k_f^2)= 2m_e^2 << M_p^2</math>
 +
 +
<math>W^2 =  M_p^2 + 2M_p(E_i - E_f) -2(E_iE_f-\vec{k_i}\cdot \vec{k_f})</math>
 +
  
 
:<math>W^2=M_p^2 + 2M_p(E_i-E_f) -Q^2 \equiv </math>Invariant Missing Mass = mass of the intermediate state that was created.
 
:<math>W^2=M_p^2 + 2M_p(E_i-E_f) -Q^2 \equiv </math>Invariant Missing Mass = mass of the intermediate state that was created.
Line 82: Line 130:
  
 
[[File:CLAS_InelasticSpectrum_2012.png | 200 px]]
 
[[File:CLAS_InelasticSpectrum_2012.png | 200 px]]
 +
 +
Get picture from Figure 1.3 on pg 13 to show how cross section changes with Q^2
 +
 +
http://arxiv.org/pdf/0812.2144.pdf
 +
 +
 +
F1 for several Q^2 to show how it smooths out
 +
 +
http://www.jlab.org/Hall-B/secure/eg1/Models/InclusiveModels.html
 +
 +
DIS scattering theory
 +
 +
 +
http://www.physics.umd.edu/courses/Phys741/xji/chapter4.pdf
  
 
===The Delta Resonance===
 
===The Delta Resonance===
Line 100: Line 162:
 
[[File:DoubleSpinOneHalfScattering.jpeg | 200 px]]
 
[[File:DoubleSpinOneHalfScattering.jpeg | 200 px]]
 
[[File:DoubleSpinThreeHalfsScattering.jpeg | 200 px]]
 
[[File:DoubleSpinThreeHalfsScattering.jpeg | 200 px]]
 +
 +
 +
==Double Spin Asymmetry==
 +
 +
If both the target and the incident virtual photon are polarized then one can measure the cross-section for two separate conditions; when the spins are parallel and anti-parallel.
 +
 +
 +
Let
 +
<math>\sigma_{3/2} </math>
 +
 +
 +
:<math>\sigma_{1/2} \equiv</math>  photon helicity is anti-parallel to the target spin
 +
 +
:<math>\sigma_{3/2} \equiv</math> photon helicity is parallel to the target spin.
 +
 +
 +
{|border="5"
 +
![[File:TF_SigmaOneHalf_2012.png | 200 px]]      || [[File:TF_Sigma3Half.png | 200 px]]
 +
|-
 +
|<math>\sigma_{\frac{1}{2}}</math>(Struck quark spin is <math>\parallel</math> to Nucleon spin) ||<math>\sigma_{\frac{3}{2}}</math> (Struck quark spin is <math>\not\parallel</math> to Nucleon spin)
 +
|}<br>
 +
 +
 +
 +
 +
===Clebsch Gordan recoupling===
 +
The recoupling of two subsystems <math>\psi</math> with angular momenta <math>j_1</math> and <math>j_2</math> to a new system<math> \Psi</math> with total angular momentum <math>J</math> is written as
 +
 +
<math>\Psi^{J}_{M} = \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} C^{j_1\;,\;j_2,\;\;J}_{m_1,m_2,M} \; \psi^{j_1}_{m_1} \psi^{j_2}_{m_2}</math> = expansion of the systems total angular momentum in terms of the uncoupled original basis states of each individual constituent
 +
 +
 +
<math>\Psi^{3/2}_{3/2} =  \sum_{m_1,m_2}  C^{1,1/2,3/2}_{m_1,m_2,3/2} \psi^{1}_{m_1} \psi^{1/2}_{m_2} = C^{1,\frac{1}{2},\frac{3}{2}}_{1,\frac{1}{2},\frac{3}{2}}\psi^{1}_{1} \psi^{1/2}_{1/2} </math> : all other possible m_1 and m_2 values don't add to M
 +
 +
<math>\Psi^{3/2}_{1/2} = \sum_{m_1,m_2} C^{1,1/2,3/2}_{m_1,m_2,1/2} \psi^{1}_{m_1} \psi^{1/2}_{m_2} = C^{1,\frac{1}{2},\frac{3}{2}}_{0,\frac{1}{2},\frac{1}{2}}\psi^{1}_{0} \psi^{1/2}_{1/2}  + C^{1,\frac{1}{2},\frac{3}{2}}_{1,\frac{-1}{2},\frac{1}{2}}\psi^{1}_{1} \psi^{1/2}_{-1/2}</math> : all other possible m_1 and m_2 values don't add to M
 +
 +
If I constrain the helicity of my virtual photon to be +1 by preparing electrons with spins along their direction of motion, then the state <math>\psi^{1}_{0}</math> doesn't exist so only only one state enters the sum
 +
 +
 +
 +
 +
[[File:TF_FlavorTagging_Borrowed.png | 200 px]]
 +
 +
<math>\Psi^{3/2}_{1/2} =  C^{1,\frac{1}{2},\frac{3}{2}}_{1,\frac{-1}{2},\frac{1}{2}}\psi^{1}_{1} \psi^{1/2}_{-1/2}</math> : all other possible m_1 and m_2 values don't add to M
 +
 +
<math>C^{j_1,j_2,J}_{m_1,m_2,M}</math> : Clebsch-Gordon Coefficient
 +
<math>C^{1,\frac{1}{2},\frac{3}{2}}_{1,\frac{1}{2},\frac{3}{2}}=1</math>
 +
<math>C^{1,\;\;\frac{1}{2},\frac{3}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{1}{\sqrt{3}}</math>
 +
 +
<math>A = \frac{\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}}{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}} = \frac{\frac{1}{3} - 1}{\frac{1}{3} + 1} = -1/2</math>
 +
 +
===Quark Distributions===
 +
 +
 +
:
 +
:<math>\sigma_p^{\pi^+ \pm \pi^-} = \frac{1}{9}[4( u + \bar{u}) \pm ( d +  \bar{d})]D_u^{\pi^+ \pm \pi^-}</math>
 +
 +
:<math>\sigma_n^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(d + \bar{d}) \pm (u + \bar{u})]D_u^{\pi^+ \pm \pi^-}</math>
 +
 +
:<math>\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u +  \bar{u}) \pm ( d +  \bar{d})]D_u^{\pi^+ \pm \pi^-}</math>
 +
 +
 +
The polarized distributions may be expressed in a similar fashion:
 +
 +
 +
 +
{|border="5"
 +
![[File:TF_SigmaOneHalf_2012.png | 200 px]]      || [[File:TF_Sigma3Half.png | 200 px]]
 +
|-
 +
|<math>\sigma_{\frac{1}{2}}</math>(Struck quark spin is <math>\parallel</math> to Nucleon spin) ||<math>\sigma_{\frac{3}{2}}</math> (Struck quark spin is <math>\not\parallel</math> to Nucleon spin)
 +
|}<br>
 +
 +
 +
<math>\frac{d^3 \sigma^h_{1/2}}{dxdQ^2 dz}\approx \Sigma_q e_q^2 q^{\parallel}(x,Q^2)D_q^h(z,Q^2)</math>
 +
 +
<math>\frac{d^3 \sigma^h_{3/2}}{dxdQ^2 dz}\approx \Sigma_q e_q^2 q^{\not\parallel}(x,Q^2)D_q^h(z,Q^2)</math>
 +
 +
:<math>\frac{d^3 \sigma^h_{1/2(3/2)}}{dxdQ^2 dz}\approx \Sigma_q e_q^2 q^{+(-)}(x,Q^2)D_q^h(z,Q^2)</math>
 +
 +
 +
<math>\Delta \sigma_p^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}</math>
 +
 +
:<math>\Delta \sigma_n^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) \pm (\Delta u + \Delta u^-)]D_u^{\pi^+ \pm \pi^-}</math>
 +
 +
:<math>\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}</math>
 +
 +
===Duality===
 +
 +
:<math><g_1> \equiv \frac{\int_{x_l}^{x_h} g_1(x,Q^2) dx}{x_h - x_l}</math>
 +
 +
where
 +
 +
<math>x= \frac{1}{1 + \frac{W^2-M^2}{Q^2}}</math>
 +
 +
<math>x_l (x_h)</math> is the maximum (minimum) value of x for the interval of W being considered
 +
 +
===Polarized QUark distributions===
 +
 +
=== Delta d-over d===
 +
 +
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|
 +
[[File:statistical_estimate_of_deltad_overd_comparisontodata.jpg|400px|thumb|<math>X_{Bj}</math> vs <math>\frac{\Delta d_v}{d_v}</math>]]
 +
|}<br>
 +
 +
== Past student pojects==
 +
 +
=== GEM fission chamber===
 +
 +
 +
U-233 source inside GEM detector with cathode voltage = 3585 and GEM voltage = 2870
 +
 +
 +
[[File:CATH3.370_GEM2.87_7956c_7957.png | 200 px]]
 +
 +
 +
:[[File:CATH2.870_GEM2.87_7917c_7916.png | 200 px]]
 +
 +
===CPAA===
 +
 +
[[File:GeometryDiagram_2.png || 400 px]][[File:DetectorGeo_picture.png || 200 px]]
 +
 +
[[File:TDC7023_1.png | 400 px]]
 +
 +
====Ba-133====
 +
 +
[[File:Ba-133_ecapture.png | 600 px]]
 +
 +
Ba-133 undergoes electron capture to Cs-133.  86% of the time it ends up in the 1/2+ , 437 keV excited state of Cs-133.  The 437 state emmits a 356 keV photon as it transitions to the 81 keV state on its way to the ground state.  We see photons of energy 81 keV and 356 keV in coincidence as the lifetime in the 81 keV state is so short.
 +
 +
{| border="1"  |cellpadding="20" cellspacing="0
 +
|-
 +
|  Energy(keV)  ||  Intensity(rel)
 +
|-
 +
| 53.1625( 6)  ||2.199(22)
 +
|-
 +
| 79.6139(13)  || 2.62( 6)
 +
|-
 +
|  '''80.9971(12)'''  || 34.06(27)
 +
|-
 +
| 160.6109(17)  || 0.645( 8)
 +
|-
 +
| 223.2373(14)  || 0.450( 4)
 +
|-
 +
| 276.3997(13)  || 7.164(22)
 +
|-
 +
| 302.8510( 6)  || 18.33( 6)
 +
|-
 +
| ''' 356.0134( 6)''' || 62.05(19)
 +
|-
 +
|  383.8480(12)    ||    8.94( 3)
 +
|-
 +
|}
 +
 +
 +
 +
The 81 keV and 356 keV lines are the strongest and, when they occur in coincidence, they represent the transition from the 436 keV excited state of Cs-133 to the 81 keV excited state and then the ground state.
 +
 +
If I put a cut on the strongest line (356 keV) observed by Det B and ask what photon energies are observed in coincidence (timing window of 53 ns) with the other HpGe detector (Detector 180-2) I see the spectrum
 +
 +
 +
[[File:R5716_356CoinOverlay.png | 400 px]]
 +
 +
==== Y-88====
 +
 +
 +
{| border="1"  |cellpadding="20" cellspacing="0
 +
|-
 +
|  Energy (keV) || Relative Intensity
 +
|-
 +
| 850.6  ||    0.065
 +
|-
 +
|'''898.042'''  ||    93.7
 +
|-
 +
| 1382.2  ||    0.021 
 +
|-
 +
|   '''1836.063 '''  ||    99.2 
 +
|-
 +
|   2734.0      ||  0.71 
 +
|-
 +
|   3219.7    ||    0.0070
 +
|}
 +
 +
 +
[[File:Run7023_Y88_scaled.png | 400 px]] [[File:Run7023_OverlayCoin_Cuts_log.png | 400 px]]
  
 
== References==
 
== References==
 +
Past colloquia
 +
 +
[[TF_01092012_Colloq]]
  
 
===Theory===
 
===Theory===

Latest revision as of 01:52, 3 November 2014

Abstract

ISU's intermediate energy nuclear physics group is presently involved in several fundamental physics measurements. This talk will describe a program to measure the fractional polarization of down quarks in a nucleon using polarized electrons to probe polarized nucleon targets. Quantum chromodynamcs (QCD) is a theory of the strong interaction; one of the four fundamental forces in nature. QCD predicts that the down quark will carry all of the nucleon's spin and result in a fractional polarization of unity when the probe interacts with down quarks that carry all of the nucleon's momentum. This theory contradicts the leading constituent quark model of the nucleon. The world's current data set is unable to discriminate between QCD's prediction and the constituent quark model. A description of this experimental program and the roles of ISU graduate students will be described.

electron scattering (collisions)

Elastic Collisions: Conserve P and E

Inelastic : Only Conserve P

Four Momentum

Using Ryder 4-momentum tensor convention: [math]P_{\mu} \equiv (E/c, -\vec{p}) \;\;\;\;\; P^{\mu} \equiv (E/c, \vec{p})[/math]

If I take the inner product of a particles four momentum with itself I get

[math]P_{\mu} P^{\mu} \equiv \left | \vec P \right |^2 = \left ( \frac{E}{c} \right )^2 - \vec{p} \cdot \vec{p} [/math]

The Energy-Momentum relation

[math]E^2 = (pc)^2 + (m_0c^2)^2[/math]
[math]\Rightarrow P_{\mu} P^{\mu} = \left ( \frac{E}{c} \right )^2 - \vec{p} \cdot \vec{p} = (m_0c)^2[/math]


The [math]\omega[/math] and [math]\vec k[/math] are the reciprocal quantities to [math]t[/math] and [math]\vec r[/math]

[math](t,\vec r) \rightarrow (\omega, \vec k)[/math]

For a plane wave

[math]K^{\mu} \equiv (\omega, \vec k)[/math]

Similarly

[math]\Rightarrow K_{\mu} K^{\mu} = \left ( \omega \right )^2 - \vec{k} \cdot \vec{k} [/math]


The de Broglie relation [math]( p = \frac{h}{\lambda} )[/math]

[math]P_{\mu} = \hbar K_{\mu}[/math]


[math]\Rightarrow K_{\mu}K^ {\mu}=\frac{P_{\mu}P^{\mu} }{ \hbar } = [/math]
[math]\left ( \omega \right )^2 - \vec{k} \cdot \vec{k} = (m_0c)^2[/math]

if its a massless particle (photon) then [math]m_0 = 0[/math]


[math]\left ( \omega \right )^2 = \vec{k} \cdot \vec{k} [/math]

Definition of Momentum Transfer

TF Elastic e-p Feynman.png


[math]q_\mu \equiv (\omega, \vec{q})[/math] [math]k^i_\mu \equiv (E_i, \vec{k_i})[/math] [math]k^f_\mu \equiv (E_f, \vec{k_f})[/math]

Conservation of Momentum
[math] k^i_\mu =q_\mu + k^f_\mu [/math]
Momentum Transfer
[math] q_\mu =k^i_\mu - k^f_\mu [/math]
Momentum Transfer Squared
[math] -Q^2 = q^2 = q_\mu q^{\mu} =(E_i-E_f)^2 - (\vec{k}_i - \vec{k}_f) \cdot (\vec{k}_i - \vec{k}_f) [/math]
[math]= m_i^2 + m_f^2 -2E_iE_f + 2\left | \vec{k}_i\right | \left | \vec{k}_f\right | cos(\theta)[/math]
[math]=-4E_iE_f \sin^2(\theta/2) \;\;\; m_i = m_f \ll E_i \mbox{ and } E \approx \left | \vec{k}_i\right |[/math]
[math]Q^2 =4E_iE_f \sin^2(\theta/2) \gt 0[/math] A space-like scattering event

Space-like interval: Two events are separated by a space like interval then there isn't enough time passing between them to allow a cause-effect relationship because a photon can't traverse the distance. This means that there is no reference frame that may be used to describe the event as happening at the same spatial location but there is a frame that describes them happening at the same time. If the spacetime interval between the two events is defined as s[math]^2 = (\Delta r)^2 - (c\Delta t)^2[/math] then [math]s^2 \gt 0[/math] for a space-like interval


Time-like interval: Two events are separated by a time like interval if enough time passes between them to allow a cause-effect relationship. This means that there is no reference frame that may be used to describe the event as happening at the same time but there is one that describes them happening at the same spatial location. If the spacetime interval between the two events is defined as s[math]^2 = (\Delta r)^2 - (c\Delta t)^2[/math] then [math]s^2 \lt 0[/math] for a time-like interval


4-Momentum vector definition using Ryder convention

[math]P_{\mu} \equiv \left ( \frac{E}{c} , - \vec p \right )[/math]
[math]P^{\mu} \equiv \left ( \frac{E}{c} , \vec p \right )[/math]
[math]P_{\mu} P^{\mu} = \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2[/math] if you define the speed of light as unity


Note
Other conventions used by Perkins
[math]P_{\mu} \equiv \left ( \vec p, -E \right )[/math]
[math]P^{\mu} \equiv \left ( \vec p , E\right )[/math]

or Kollen

[math]P_{\mu} \equiv \left ( \vec p, iE \right )[/math]
[math]P^{\mu} \equiv \left ( \vec p , iE\right )[/math]


Momentum transfer is defined as

[math]q_{\mu} \equiv ( \omega, \vec q) = P^i_{\mu} - P^f_{\mu}[/math] : conservation of momentum
[math]q_{\mu}q^{\mu} = (E_i - E_f)^2 - (\vec {P}_i - \vec{P}_f) \cdot (\vec {P}_i - \vec{P}_f)[/math]
[math]= m_i^2 +m_f^2 - 2E_iE_f + 2 \left | \vec {P}_i \right | \left | \vec {P}_f \right |[/math]

Definition of Missing Mass

Inelastic scattering (Energy is not conserved but absorbed from the momentum transfer)


[math]P_e^{\mu} \equiv (E_i,\vec{k}_i)[/math] [math]\left(P_e^{\mu}\right)^{\prime} \equiv (E_f,\vec{k}_f)[/math] [math]P_p^{\mu} \equiv (M_p,0)[/math] [math]\left(P_p^{\mu}\right)^{\prime} \equiv (E_X,\vec{k}_X)[/math]

4-momentum conservation
[math]P_e^{\mu} + P_p^{\mu} = \left(P_e^{\mu}\right)^{\prime} + \left(P_p^{\mu}\right)^{\prime}[/math]


[math]\left(P_p^{\mu}\right)^{\prime} \left(P_{\mu}^p\right)^{\prime} = [P_e^{\mu} + P_p^{\mu} - \left(P_e^{\mu}\right)^{\prime} ][P^e_{\mu} + P^p_{\mu} - \left(P^e_{\mu}\right)^{\prime} ][/math]

[math]E_X^2 - P_X^2 \equiv W^2 = (E_i^2 - k_i^2) + (E_f^2-k_f^2) + M_p^2 + 2M_p(E_i - E_f) -2(E_iE_f-\vec{k_i}\cdot \vec{k_f})[/math]

[math](E_i^2 - k_i^2) + (E_f^2-k_f^2)= 2m_e^2 \lt \lt M_p^2[/math]

[math]W^2 = M_p^2 + 2M_p(E_i - E_f) -2(E_iE_f-\vec{k_i}\cdot \vec{k_f})[/math]


[math]W^2=M_p^2 + 2M_p(E_i-E_f) -Q^2 \equiv [/math]Invariant Missing Mass = mass of the intermediate state that was created.


200 px

Get picture from Figure 1.3 on pg 13 to show how cross section changes with Q^2

http://arxiv.org/pdf/0812.2144.pdf


F1 for several Q^2 to show how it smooths out

http://www.jlab.org/Hall-B/secure/eg1/Models/InclusiveModels.html

DIS scattering theory


http://www.physics.umd.edu/courses/Phys741/xji/chapter4.pdf

The Delta Resonance

EpDeltaFeynman2012.png

Decay Modes: [math]ep \rightarrow \;\; \left \{ {N \pi \;\;\; 99.5% \atop p \gamma \;\;\; 0.5% } \right .[/math]


[math]\sigma = \lt \Delta^+ | V_{\mu}^3| p\gt [/math]

[math]V_{\mu}^3 =[/math] Vector current of the virtual photon exchange

01092012 epnipiTrack.pngCal01092012 epnipiCal.png

Spin 1/2 and 3/2 final states

DoubleSpinOneHalfScattering.jpeg DoubleSpinThreeHalfsScattering.jpeg


Double Spin Asymmetry

If both the target and the incident virtual photon are polarized then one can measure the cross-section for two separate conditions; when the spins are parallel and anti-parallel.


Let [math]\sigma_{3/2} [/math]


[math]\sigma_{1/2} \equiv[/math] photon helicity is anti-parallel to the target spin
[math]\sigma_{3/2} \equiv[/math] photon helicity is parallel to the target spin.


TF SigmaOneHalf 2012.png TF Sigma3Half.png
[math]\sigma_{\frac{1}{2}}[/math](Struck quark spin is [math]\parallel[/math] to Nucleon spin) [math]\sigma_{\frac{3}{2}}[/math] (Struck quark spin is [math]\not\parallel[/math] to Nucleon spin)




Clebsch Gordan recoupling

The recoupling of two subsystems [math]\psi[/math] with angular momenta [math]j_1[/math] and [math]j_2[/math] to a new system[math] \Psi[/math] with total angular momentum [math]J[/math] is written as

[math]\Psi^{J}_{M} = \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} C^{j_1\;,\;j_2,\;\;J}_{m_1,m_2,M} \; \psi^{j_1}_{m_1} \psi^{j_2}_{m_2}[/math] = expansion of the systems total angular momentum in terms of the uncoupled original basis states of each individual constituent


[math]\Psi^{3/2}_{3/2} = \sum_{m_1,m_2} C^{1,1/2,3/2}_{m_1,m_2,3/2} \psi^{1}_{m_1} \psi^{1/2}_{m_2} = C^{1,\frac{1}{2},\frac{3}{2}}_{1,\frac{1}{2},\frac{3}{2}}\psi^{1}_{1} \psi^{1/2}_{1/2} [/math] : all other possible m_1 and m_2 values don't add to M

[math]\Psi^{3/2}_{1/2} = \sum_{m_1,m_2} C^{1,1/2,3/2}_{m_1,m_2,1/2} \psi^{1}_{m_1} \psi^{1/2}_{m_2} = C^{1,\frac{1}{2},\frac{3}{2}}_{0,\frac{1}{2},\frac{1}{2}}\psi^{1}_{0} \psi^{1/2}_{1/2} + C^{1,\frac{1}{2},\frac{3}{2}}_{1,\frac{-1}{2},\frac{1}{2}}\psi^{1}_{1} \psi^{1/2}_{-1/2}[/math] : all other possible m_1 and m_2 values don't add to M

If I constrain the helicity of my virtual photon to be +1 by preparing electrons with spins along their direction of motion, then the state [math]\psi^{1}_{0}[/math] doesn't exist so only only one state enters the sum



TF FlavorTagging Borrowed.png

[math]\Psi^{3/2}_{1/2} = C^{1,\frac{1}{2},\frac{3}{2}}_{1,\frac{-1}{2},\frac{1}{2}}\psi^{1}_{1} \psi^{1/2}_{-1/2}[/math] : all other possible m_1 and m_2 values don't add to M

[math]C^{j_1,j_2,J}_{m_1,m_2,M}[/math] : Clebsch-Gordon Coefficient [math]C^{1,\frac{1}{2},\frac{3}{2}}_{1,\frac{1}{2},\frac{3}{2}}=1[/math] [math]C^{1,\;\;\frac{1}{2},\frac{3}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{1}{\sqrt{3}}[/math]

[math]A = \frac{\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}}{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}} = \frac{\frac{1}{3} - 1}{\frac{1}{3} + 1} = -1/2[/math]

Quark Distributions

[math]\sigma_p^{\pi^+ \pm \pi^-} = \frac{1}{9}[4( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]
[math]\sigma_n^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(d + \bar{d}) \pm (u + \bar{u})]D_u^{\pi^+ \pm \pi^-}[/math]
[math]\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]


The polarized distributions may be expressed in a similar fashion:


TF SigmaOneHalf 2012.png TF Sigma3Half.png
[math]\sigma_{\frac{1}{2}}[/math](Struck quark spin is [math]\parallel[/math] to Nucleon spin) [math]\sigma_{\frac{3}{2}}[/math] (Struck quark spin is [math]\not\parallel[/math] to Nucleon spin)



[math]\frac{d^3 \sigma^h_{1/2}}{dxdQ^2 dz}\approx \Sigma_q e_q^2 q^{\parallel}(x,Q^2)D_q^h(z,Q^2)[/math]

[math]\frac{d^3 \sigma^h_{3/2}}{dxdQ^2 dz}\approx \Sigma_q e_q^2 q^{\not\parallel}(x,Q^2)D_q^h(z,Q^2)[/math]

[math]\frac{d^3 \sigma^h_{1/2(3/2)}}{dxdQ^2 dz}\approx \Sigma_q e_q^2 q^{+(-)}(x,Q^2)D_q^h(z,Q^2)[/math]


[math]\Delta \sigma_p^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]

[math]\Delta \sigma_n^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) \pm (\Delta u + \Delta u^-)]D_u^{\pi^+ \pm \pi^-}[/math]
[math]\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]

Duality

[math]\lt g_1\gt \equiv \frac{\int_{x_l}^{x_h} g_1(x,Q^2) dx}{x_h - x_l}[/math]

where

[math]x= \frac{1}{1 + \frac{W^2-M^2}{Q^2}}[/math]

[math]x_l (x_h)[/math] is the maximum (minimum) value of x for the interval of W being considered

Polarized QUark distributions

Delta d-over d

[math]X_{Bj}[/math] vs [math]\frac{\Delta d_v}{d_v}[/math]


Past student pojects

GEM fission chamber

U-233 source inside GEM detector with cathode voltage = 3585 and GEM voltage = 2870


CATH3.370 GEM2.87 7956c 7957.png


CATH2.870 GEM2.87 7917c 7916.png

CPAA

GeometryDiagram 2.pngDetectorGeo picture.png

TDC7023 1.png

Ba-133

Ba-133 ecapture.png

Ba-133 undergoes electron capture to Cs-133. 86% of the time it ends up in the 1/2+ , 437 keV excited state of Cs-133. The 437 state emmits a 356 keV photon as it transitions to the 81 keV state on its way to the ground state. We see photons of energy 81 keV and 356 keV in coincidence as the lifetime in the 81 keV state is so short.

Energy(keV) Intensity(rel)
53.1625( 6) 2.199(22)
79.6139(13) 2.62( 6)
80.9971(12) 34.06(27)
160.6109(17) 0.645( 8)
223.2373(14) 0.450( 4)
276.3997(13) 7.164(22)
302.8510( 6) 18.33( 6)
356.0134( 6) 62.05(19)
383.8480(12) 8.94( 3)


The 81 keV and 356 keV lines are the strongest and, when they occur in coincidence, they represent the transition from the 436 keV excited state of Cs-133 to the 81 keV excited state and then the ground state.

If I put a cut on the strongest line (356 keV) observed by Det B and ask what photon energies are observed in coincidence (timing window of 53 ns) with the other HpGe detector (Detector 180-2) I see the spectrum


R5716 356CoinOverlay.png

Y-88

Energy (keV) Relative Intensity
850.6 0.065
898.042 93.7
1382.2 0.021
1836.063 99.2
2734.0 0.71
3219.7 0.0070


Run7023 Y88 scaled.png Run7023 OverlayCoin Cuts log.png

References

Past colloquia

TF_01092012_Colloq

Theory

Phenomenological

NP, B291(1987)793; NP, B346(1990)1;

    Z. Phys. C56(1992)493;
    Eur. Phys. J. C44  (2005)219;
    hep-ph/0205123
    arXiV:1310.5285


QCD inspired

NP, B483(1997)291; NP, B484(1997)265;

    PRL 85(2000)3591; PRL 89(2002)162301;
    JHEP 0211(2002)44; NP, A720(2003)131; 
    Eur. Phys. J. C30(2003)213; arXiV:09073534;
    NP, A761(2005)67; PR, C81(2010)024902

Hybrids

PYTHIA + BUU simulation

     PR, C70(2004)054609; NP, A801(2008)68

Experiment

keith's 2012 talk in Italy on EG1-DVCS

Unpolarized

http://link.springer.com/article/10.1007%2FJHEP04%282014%29005


File:AndyMiller 200TalkAtDESY.pdf 2002 talk by CA Miller at DESY


File:Dueren.98.055.pdf 1998 Duren talk

2013 APS talk on EG1-DVCS

July 30,2014 talk by XingLong Li at Heremes File:XingLongLi TalkOnPACIAEmdoelForSIDIS.pdf from

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=31&ved=0CB0QFjAAOB4&url=http%3A%2F%2Fhadron2014.csp.escience.cn%2Fdct%2Fattach%2FY2xiOmNsYjpwZGY6MzAwMjA%3D&ei=UPw1VNiQAdHlsATA7IHwDw&usg=AFQjCNH5yyek_zTJ22TZq0Dw_YLUeAxe2Q


Xiangs proposal for CLAS12 measurement of SIDIS Xsections see Fig. 1


Semi-inclusive deep inelastic scattering at small transverse momentum


Naomi's SIDIS Hermes talk from 2011 at NNPSS11


1986 article ob QCD effects in semi-inclusive deep inelastic scattering from a polarized target by P. Chiappetta J. -Ph. Guillet

theses

2014 Ph.D thesis of Naomi's student Sylvester Joosten

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0CFYQFjAG&url=http%3A%2F%2Fwww.nikhef.nl%2Fpub%2Fservices%2Fbiblio%2Ftheses_pdf%2Fthesis_E_Garutti.pdf&ei=Osw3VJbSAY27ogSx3IDwDQ&usg=AFQjCNENlNdgPr6dgfq9OanlL8cUnYHmMQ&bvm=bv.77161500,d.cGU


TF_SIDIS_Physics