Difference between revisions of "Forest UCM PnCP"

From New IAC Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
;Lorentz Force
 
;Lorentz Force
  
:<math>\vec{F} = q \vec{E}q\vec{v} \times \vec{B}</math>
+
:<math>\vec{F} = q \vec{E} + q\vec{v} \times \vec{B}</math>
  
 
;Note: the work done by a magnetic field is zero if the particle's kinetic energy (mass and velocity) don't change.
 
;Note: the work done by a magnetic field is zero if the particle's kinetic energy (mass and velocity) don't change.
Line 17: Line 17:
 
No work is done on a charged particle force to move in a fixed circular orbit by a magnetic field (cyclotron)
 
No work is done on a charged particle force to move in a fixed circular orbit by a magnetic field (cyclotron)
  
 +
 +
:\vec{F} = m \vec{a} = q \vec{v} \times \vec{B} =
  
 
[[Forest_Ugrad_ClassicalMechanics]]
 
[[Forest_Ugrad_ClassicalMechanics]]

Revision as of 11:59, 25 August 2014

Charged Particle in uniform B-Field

Consider a charged particle moving the x-y plane in the presence of a uniform magnetic field with field lines in the z-dierection.

[math]\vec{v} = v_x \hat i + v_y \hat j[/math]
[math]\vec{B} = B \hat k[/math]


Lorentz Force
[math]\vec{F} = q \vec{E} + q\vec{v} \times \vec{B}[/math]
Note
the work done by a magnetic field is zero if the particle's kinetic energy (mass and velocity) don't change.
[math]W = \Delta K.E.[/math]

No work is done on a charged particle force to move in a fixed circular orbit by a magnetic field (cyclotron)


\vec{F} = m \vec{a} = q \vec{v} \times \vec{B} =

Forest_Ugrad_ClassicalMechanics