Difference between revisions of "Forest UCM Osc"

From New IAC Wiki
Jump to navigation Jump to search
Line 24: Line 24:
 
A Taylor expansion of the Potential function U(x) about the equalibrium point <math>(x_0)</math> is
 
A Taylor expansion of the Potential function U(x) about the equalibrium point <math>(x_0)</math> is
  
: <math>U(x) = U(x_0) + \left . \frac{\partial U}{\partial x} \right |_{x=x)0}</math>
+
: <math>U(x) = U(x_0) + \left . \frac{\partial U}{\partial x} \right |_{x=x_0} (x-x_0) +  \frac{1}{2!}\left . \frac{\partial^2 U}{\partial x^2} \right |_{x=x_0} (x-x_0)^2 +  \frac{1}{3!}\left . \frac{\partial^3 U}{\partial x^3} \right |_{x=x_0} (x-x_0)^3 + \dots </math>
  
 
==Interpretation (Hooke's law==
 
==Interpretation (Hooke's law==

Revision as of 11:50, 1 October 2014

Hooke's Law

Derivation

In the previous chapter we saw how the equations of motion could from the requirement that Energy be conserved.

[math]E = T + U[/math]
[math] T = E - U[/math]
[math] \frac{1}{2} m v^2 = E- U[/math]

in 1-D

[math] \dot {x}^2 = \frac{2}{m} \left ( E-U(x) \right )[/math]
[math] \dot {x}^2= \frac{2}{m} \left ( E-U(x) \right )[/math]
[math] \dot {x}= \sqrt{\frac{2}{m} \left ( E-U(x) \right )}[/math]
[math] \frac{dx}{dt}= \sqrt{\frac{2}{m} \left ( E-U(x) \right )}[/math]
[math] \frac{dx}{ \sqrt{\frac{2}{m} \left ( E-U(x) \right )}}=dt[/math]
[math] \sqrt{\frac{m}{2}} \int \frac{dx}{ \sqrt{\left ( E-U(x) \right )}}=\int dt[/math]


Let consider the cas where an object is oscillating about a point of stability [math](x_0)[/math]

A Taylor expansion of the Potential function U(x) about the equalibrium point [math](x_0)[/math] is

[math]U(x) = U(x_0) + \left . \frac{\partial U}{\partial x} \right |_{x=x_0} (x-x_0) + \frac{1}{2!}\left . \frac{\partial^2 U}{\partial x^2} \right |_{x=x_0} (x-x_0)^2 + \frac{1}{3!}\left . \frac{\partial^3 U}{\partial x^3} \right |_{x=x_0} (x-x_0)^3 + \dots [/math]

Interpretation (Hooke's law

The Force exerted by a spring is proportional to the spring displacement from equilibrium and is directed towards restoring the equilibrium condition. (a linear restoring force).


In 1-D this force may be written as

[math]F = - kx[/math]


Is this a conservative force?

1.) The force only depends on position.

2.) The work done is independent of path ( [math]\vec \nabla \times \vec F = 0[/math] in 1-D and 3-D)

Potential

[math]U = - \int \vec F \cdot \vec r = - \int (-kx) dx = \frac{1}{2} k x^2[/math]

Simple Harmonic Motion (SHM)

2-D Oscillators

Damped Oscillations

Resonance

Forest_Ugrad_ClassicalMechanics