Difference between revisions of "Forest UCM NLM GalileanTans"

From New IAC Wiki
Jump to navigation Jump to search
(Replaced content with " 200 px Consider the description of an object in motion using two different coordinate systems <math>S</math> and <math>S^{\prime…")
Line 1: Line 1:
 
 
[[File:TF_UCM_GalileanTans_RefFrame.png | 200 px]]
 
[[File:TF_UCM_GalileanTans_RefFrame.png | 200 px]]
  
  
Consider the motion of an object using two different coordinate systems <math>S</math> and <math>S^{\prime}</math>
+
Consider the description of an object in motion using two different coordinate systems <math>S</math> and <math>S^{\prime}</math>.
 
 
 
 
The C.M. frame is often chosen to theoretically calculate cross-sections even though experiments are conducted in the Lab frame.  In such cases you will need to transform cross-sections between two frames.
 
 
 
The total cross-section should be frame independent
 
 
 
:<math>\sigma_{C.M.} = \sigma_{Lab}</math>
 
 
 
or
 
 
 
: <math>\sigma(\theta) d \Omega = \sigma(\psi) d \Omega^{\prime}</math>
 
 
 
where
 
 
 
<math>\theta</math> is in the CM frame and <math>\psi</math> is in the Lab frame.
 
 
 
 
 
;A non-relativistic transformation:
 
 
 
: <math>\sigma(\theta) d \Omega = \sigma(\psi) d \Omega^{\prime}</math>
 
: <math>\sigma(\theta) 2 \pi \sin(\theta) d \theta = \sigma(\psi) 2 \pi \sin (\psi) d \psi</math>
 
: <math>\Rightarrow \sigma(\psi) = \frac{\sin(\theta)}{\sin(\psi)} \frac{d \theta}{d \psi} \sigma(\theta)</math>
 
 
 
The transformation is governed by the dependence of <math>\theta</math> on <math> \psi</math> <math> \left( \frac{d \theta}{d \psi} \right )</math>
 
 
 
Lets return back to our picture of the scattering Process
 
 
 
[[Image:SPIM ElasCollis Lab CM Frame.jpg | 500 px]]
 
 
 
if we superimpose the vectors <math>\vec{v}_1</math> and <math>\vec{v}_1^{\prime}</math> we have
 
 
 
[[Image:SPIM ElasCollis Lab CM Frame_Velocities.jpg]]
 
 
 
Trig identities (non-relativistic Gallilean transformation) tell us
 
 
 
<math>v_1 \sin(\psi) = v_1^{\prime} \sin(\theta)</math>
 
 
 
 
 
<math>v_1 cos(\psi) = v_{cm} + v_1^{\prime} \cos(\theta)</math>
 
 
 
solving for <math>\psi</math>
 
 
 
<math>\tan(\psi) = \frac{\sin(\psi)}{\cos(\psi)} = \frac{v_1^{\prime} \sin(\theta)/v_1}{\frac{v_{CM}}{v_1} + \frac{v_1^{\prime} \cos(\theta)}{v_1} }
 
= \frac{\sin(\theta)}{\cos(\theta) + \frac{v_{CM}}{v_1^{\prime}}}</math>
 
 
 
For an elastic collision only the directions change in the CM Frame: <math>u_1^{\prime}= v_1^{\prime}</math>  & <math>u_1^{\prime}= v_2^{\prime}</math>
 
 
 
;From the definition of the C.M.
 
;<math>\vec{v}_{CM} = \frac{m_1 \vec{u}_1 + m_2 \vec{u}_2}{m_1+m_2} = \frac{m_1}{m_1+m_2} \vec{u}_1</math>
 
 
 
;conservation of momentum in CM Frame <math>\Rightarrow</math> :
 
:<math>m_1 u_1^{\prime} = - m_2 u_2{\prime}</math>
 
 
 
:<math> \Rightarrow v_1^{\prime} = u_1^{\prime} = \frac{-m_2}{m_1} u_2^{\prime}</math>
 
 
 
; Gallilean Coordinate transformation:
 
;<math>\vec{u}_1 = \vec{u}_1^{\prime} + \vec{v}_{CM} = \vec{u}_1^{\prime} + \frac{m_1}{m_1+m_2} \vec{u}_1</math>
 
:<math>\Rightarrow u_1{\prime} = \left [ 1 - \frac{m_1}{m_1 + m_2} \right ] u_1 = \frac{m_2}{m_1+m_2}u_1</math>
 
:<math>\Rightarrow v_1^{\prime} = u_1^{\prime}  =\frac{m_2}{m_1+m_2} u_1</math>
 
 
 
; another expression for <math>\psi</math>
 
 
 
using the above gallilean transformation we can do the following
 
 
 
:<math>\frac{v_{CM}}{v_1^{\prime}}= \frac{\frac{m_1}{m_1+m_2} u_1}{\frac{m_2}{m_1+m_2} u_1} = \frac{m_1}{m_2}</math>
 
 
 
or
 
 
 
: <math>\tan(\psi) = \frac{\sin(\theta)}{\cos(\theta) + \frac{m_1}{m_2}}</math>
 
 
 
after a little trig substitution
 
 
 
<math>\Rightarrow \frac{m_1}{m_2} = \frac{sin(\theta - \psi)}{\sin(\psi)} =</math> constant
 
 
 
now use the chain rule to find <math>\frac{d \theta}{d \psi}</math>
 
 
 
: <math>f \equiv  \frac{sin(\theta - \psi)}{\sin(\psi)} =</math> constant
 
:<math>df = 0 = \frac{ \partial f}{\partial \psi} d \psi  + \frac{ \partial f}{\partial \theta} d \theta </math>
 
: <math>\Rightarrow \frac{d \theta}{d \psi} = \frac{-\frac{ \partial f}{\partial \psi} }{\frac{ \partial f}{\partial \theta} }</math>
 
 
 
:<math>-\frac{ \partial f}{\partial \psi} = \frac{\cos(\theta - \psi)}{\sin(\psi)} + \frac{\sin(\theta - \psi)}{\sin(\psi)}</math>
 
:<math>\frac{ \partial f}{\partial \theta }= 1 + \frac{\sin(\theta - \psi) \cos(\psi)}{\cos(\theta - \psi) \sin(\psi)}</math>
 
  
after substitution:
 
: <math>\sigma(\psi) = \frac{\sin(\theta)}{\sin(\psi)} \frac{d \theta}{d \psi} \sigma(\theta)</math>
 
: <math>=\frac{\sin(\theta)}{\sin(\psi)} \left [ 1 + \frac{\sin(\theta - \psi) \cos(\psi)}{\cos(\theta - \psi) \sin(\psi)} \right ] \sigma(\theta)</math>
 
  
For the above equation to be more useful one would prefer to recast it in terms of only <math>\psi</math> and masses.
+
Assume that <math>S^{\prime}</math> is a coordinate system moving at a CONSTANT speed <math>v</math>.
  
:<math>\sigma(\psi) = \frac{\left [ \frac{m_1}{m_2}\cos(\psi) + \sqrt{1-\left ( \frac{m_1 \sin(\psi) }{m_2} \right )^2 }\right ]}{\sqrt{1 - \left ( \frac{m_1 \sin(\psi)}{m_2}\right )^2 }}\sigma(\theta)</math>
 
  
  
 
[[Forest_UCM_NLM#Galilean_Transformations]]
 
[[Forest_UCM_NLM#Galilean_Transformations]]

Revision as of 13:41, 18 August 2014

TF UCM GalileanTans RefFrame.png


Consider the description of an object in motion using two different coordinate systems [math]S[/math] and [math]S^{\prime}[/math].


Assume that [math]S^{\prime}[/math] is a coordinate system moving at a CONSTANT speed [math]v[/math].


Forest_UCM_NLM#Galilean_Transformations