Difference between revisions of "Forest UCM NLM BlockOnInclineWfriction"

From New IAC Wiki
Jump to navigation Jump to search
Line 2: Line 2:
 
=The problem=
 
=The problem=
  
Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by  
+
Consider a block of mass m sliding down an infinitely long inclined plane shown below with a frictional force that is given by  
  
 
:<math>F_f = \mu mg</math>
 
:<math>F_f = \mu mg</math>

Revision as of 12:26, 21 August 2014

The problem

Consider a block of mass m sliding down an infinitely long inclined plane shown below with a frictional force that is given by

[math]F_f = \mu mg[/math]


200 px

Find the blocks speed as a function of time.

Step 1: Identify the system

The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.

Step 2: Choose a suitable coordinate system

A coordinate system with one axis along the direction of motion may make solving the problem easier

Step 3: Draw the Free Body Diagram

200 px

Step 4: Define the Force vectors using the above coordinate system

[math]\vec{N} = \left | \vec{N} \right | \hat{j}[/math]
[math]\vec{F_g} = \left | \vec{F_g} \right | \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )= mg \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )[/math]
[math]\vec{F_f} = - \mu mg \hat{i}[/math]

Step 5: Use Newton's second law

in the [math]\hat i[/math] direction

[math]\sum F_{ext} = mg \sin \theta - \mu mg= ma_x = m \frac{dv_x}{dt}[/math]
[math]\int_0^t g \left ( \sin \theta - \mu \right ) dt = \int_{v_i}^{v} dv [/math]
[math]v= v_i - g \left ( \mu -\sin \theta \right ) t [/math]


The time the block is in motion

[math]t= \frac{v_i}{\left ( \mu - \sin \theta \right ) }[/math]

The above physical description of the problem is only valid when

[math]\left ( \mu - \sin \theta \right ) \gt 0[/math]

the block will not be moving if the above condition is not true. The friction will change from being kinetic to static when the above condition is not satisfied.


Forest_UCM_NLM#Block_on_incline_with_friction