Difference between revisions of "Forest UCM NLM BlockOnInclineWfriction"

From New IAC Wiki
Jump to navigation Jump to search
Line 33: Line 33:
 
==in the <math>\hat i</math> direction==
 
==in the <math>\hat i</math> direction==
  
:<math>\sum F_{ext} = mg \sin \theta -mkv^2 = ma_x = m \frac{dv_x}{dt}</math>
+
:<math>\sum F_{ext} = mg \sin \theta - \mu mg= ma_x = m \frac{dv_x}{dt}</math>
 
: <math>\int_0^t dt = \int_0^v \frac{dv}{g\sin \theta - kv^2}</math>
 
: <math>\int_0^t dt = \int_0^v \frac{dv}{g\sin \theta - kv^2}</math>
  

Revision as of 20:52, 20 August 2014

The problem

Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by

[math]F_f = \mu mg[/math]


200 px

Find the blocks speed as a function of time.

Step 1: Identify the system

The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.

Step 2: Choose a suitable coordinate system

A coordinate system with one axis along the direction of motion may make solving the problem easier

Step 3: Draw the Free Body Diagram

200 px

Step 4: Define the Force vectors using the above coordinate system

[math]\vec{N} = \left | \vec{N} \right | \hat{j}[/math]
[math]\vec{F_g} = \left | \vec{F_g} \right | \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )= mg \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )[/math]
[math]\vec{F_f} = - \mu mg \hat{i}[/math]

Step 5: Used Newton's second law

in the [math]\hat i[/math] direction

[math]\sum F_{ext} = mg \sin \theta - \mu mg= ma_x = m \frac{dv_x}{dt}[/math]
[math]\int_0^t dt = \int_0^v \frac{dv}{g\sin \theta - kv^2}[/math]

Integral table [math]\Rightarrow[/math]

[math]\int \frac{dx}{a^2 + b^2x^2} = \frac{1}{ab} \tan^{-1} \frac{bx}{a}[/math]


[math]a^2 = g \sin \theta[/math]
[math]b^2= -k[/math]
[math]\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{\sqrt{-gk\sin \theta}} \tan^{-1} \left ( \sqrt{\frac{-k}{g \sin \theta}} \; v \right )[/math]


[math]i \equiv \sqrt{-1}[/math]
[math]\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{\sqrt{gk\sin \theta}} i \tan^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;iv \right )[/math]
[math]i\tan^{-1}(icx) = -\tanh^{-1}(cx) = -\tanh^{-1}\left (\frac{\left | b \right |}{a} x\right )[/math]


Identities

[math]\tan^{-1}(z) = \frac{i}{2} \log \left ( \frac{i + z}{i-z}\right )[/math]
[math]\tanh^{-1}(z) = \frac{1}{2} \log \left ( \frac{1 + z}{1-z}\right )[/math]
[math]\tan^{-1}(ix) = \frac{i}{2} \log \left ( \frac{i + ix}{i-ix}\right )=\frac{i}{2} \log \left ( \frac{1 + 1x}{1-x}\right ) = i\tanh^{-1}(x)[/math]
[math]t = \frac{1}{\sqrt{gk\sin \theta}} \tanh^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;v \right )[/math]

Solving for [math]v[/math]

v = \tan \left ( \sqrt{gk\sin \theta} i t \right )
=

Forest_UCM_NLM#Block_on_incline_with_friction


Forest_UCM_NLM#Block_on_incline_with_friction