Difference between revisions of "Forest UCM NLM BlockOnIncline"

From New IAC Wiki
Jump to navigation Jump to search
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
=the problem=
 
=the problem=
  
Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by  
+
Consider a block of mass <math>m</math> is sliding down the inclined plane shown below with a frictional force that is given by  
  
 
:<math>F_f = kmv^2</math>
 
:<math>F_f = kmv^2</math>
  
 +
 +
How long does it take to fall a distance <math>x</math>?
  
 
[[File:TF_UCM_InclinedPlaneWfriction.png | 200 px]]
 
[[File:TF_UCM_InclinedPlaneWfriction.png | 200 px]]
 
Find the blocks speed as a function of time.
 
  
 
=Step 1:  Identify the system=
 
=Step 1:  Identify the system=
Line 38: Line 38:
 
:<math> \Rightarrow v_t^2 = \frac{g \sin \theta}{k}</math>
 
:<math> \Rightarrow v_t^2 = \frac{g \sin \theta}{k}</math>
  
Insert the terminal velociy constant into Newton's second law
+
;This means that the block does not stop sliding but instead it reaches a minimal (terminal) velocity.
 +
 
 +
Insert the terminal velocity constant into Newton's second law
  
 
:<math>\sum F_{ext} = mk \left ( v_t^2 - v^2 \right)  = ma_x = m \frac{dv_x}{dt}</math>
 
:<math>\sum F_{ext} = mk \left ( v_t^2 - v^2 \right)  = ma_x = m \frac{dv_x}{dt}</math>
  
  
: <math>\int_0^t dt = \int_{v_i}^v \frac{dv}{k \left ( v_t^2 - v^2 \right)}</math>
+
: <math>\int dt = \int \frac{dv}{k \left ( v_t^2 - v^2 \right)}</math>
 +
 
  
 +
before we had <math>(v dv)</math> in the numerator and could do a <math>u du</math> substitution, but not this time, use an integral table.
  
 
Integral table <math>\Rightarrow</math>
 
Integral table <math>\Rightarrow</math>
Line 52: Line 56:
  
 
: <math>a^2 = v_t^2 = \frac{g \sin \theta}{k}</math>
 
: <math>a^2 = v_t^2 = \frac{g \sin \theta}{k}</math>
: <math>b^2= -1</math>
+
: <math>b^2= -1 = i^2</math>
  
:<math>\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{\sqrt{-gk\sin \theta}} \tan^{-1} \left ( \sqrt{\frac{-k}{g \sin \theta}} \; v \right )</math>
+
:<math>\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{ikv_t} \tan^{-1} \left ( \frac{iv}{v_t}  \right )</math>
 +
:::<math> = \frac{-i}{kv_t} \tan^{-1} \left ( \frac{iv}{v_t} \right )</math>
  
  
:: <math>i \equiv \sqrt{-1}</math>
 
  
:<math>\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{\sqrt{gk\sin \theta}} i \tan^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;iv \right )</math>
+
Identities
  
 
::<math>i\tan^{-1}(icx) = -\tanh^{-1}(cx) = -\tanh^{-1}\left (\frac{\left | b \right |}{a} x\right )</math>
 
::<math>i\tan^{-1}(icx) = -\tanh^{-1}(cx) = -\tanh^{-1}\left (\frac{\left | b \right |}{a} x\right )</math>
 
 
Identities
 
 
 
::<math>\tan^{-1}(z) = \frac{i}{2} \log \left ( \frac{i + z}{i-z}\right )</math>
 
::<math>\tan^{-1}(z) = \frac{i}{2} \log \left ( \frac{i + z}{i-z}\right )</math>
 
::<math>\tanh^{-1}(z) = \frac{1}{2} \log \left ( \frac{1 + z}{1-z}\right )</math>
 
::<math>\tanh^{-1}(z) = \frac{1}{2} \log \left ( \frac{1 + z}{1-z}\right )</math>
 
:<math>\tan^{-1}(ix) = \frac{i}{2} \log \left ( \frac{i + ix}{i-ix}\right )=\frac{i}{2} \log \left ( \frac{1 + 1x}{1-x}\right ) = i\tanh^{-1}(x)</math>
 
:<math>\tan^{-1}(ix) = \frac{i}{2} \log \left ( \frac{i + ix}{i-ix}\right )=\frac{i}{2} \log \left ( \frac{1 + 1x}{1-x}\right ) = i\tanh^{-1}(x)</math>
  
:<math>t = \frac{1}{\sqrt{gk\sin \theta}} \tanh^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;v \right )</math>
+
 
 +
substituting
 +
 
 +
:<math>\int dt = \int \frac{dv}{k \left ( v_t^2 - v^2 \right)}</math>
 +
:<math>t = \frac{-i}{kv_t} \tan^{-1} \left ( \frac{iv}{v_t}\right )  = \frac{1}{kv_t} \tanh^{-1} \left ( \frac{v}{v_t} \right ) </math>
  
 
Solving for <math>v</math>
 
Solving for <math>v</math>
  
: v = \tan \left ( \sqrt{gk\sin \theta} i t \right )
+
: <math>v = v_t \tanh \left ( k v_t t \right ) = \frac{dx}{dt}</math>
::=
+
 
 +
 
 +
:<math>\int dx = v_t \int \tanh \left ( k v_t t \right ) dt</math>
 +
 
 +
 
 +
Integral table <math>\Rightarrow</math>
 +
 
 +
::<math>\int \tanh (x) dx = \ln \left ( \cosh (x) \right )</math>
 +
 
 +
 
 +
:<math>x = \frac{1}{k} \ln \left ( \cosh (k v_t t) \right )</math>
 +
 
 +
solving for the fall time
 +
 
 +
:<math>t = \frac{\cosh^{-1} \left ( e^{kx} \right)}{kv_t}= \frac{\cosh^{-1} \left ( e^{kx} \right)}{\sqrt{kg \sin \theta}}</math>
 +
 
  
 
[[Forest_UCM_NLM#Block_on_incline_with_friction]]
 
[[Forest_UCM_NLM#Block_on_incline_with_friction]]

Latest revision as of 17:48, 8 September 2014

the problem

Consider a block of mass [math]m[/math] is sliding down the inclined plane shown below with a frictional force that is given by

[math]F_f = kmv^2[/math]


How long does it take to fall a distance [math]x[/math]?

200 px

Step 1: Identify the system

The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.

Step 2: Choose a suitable coordinate system

A coordinate system with one axis along the direction of motion may make solving the problem easier

Step 3: Draw the Free Body Diagram

200 px

Step 4: Define the Force vectors using the above coordinate system

[math]\vec{N} = \left | \vec{N} \right | \hat{j}[/math]
[math]\vec{F_g} = \left | \vec{F_g} \right | \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )= mg \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )[/math]
[math]\vec{F_f} = - kmv^2 \hat{i}[/math]

Step 5: Used Newton's second law

Motion in the [math]\hat i[/math] direction described by Newton's second law is:

[math]\sum F_{ext} = mg \sin \theta -mkv^2 = ma_x = m \frac{dv_x}{dt}[/math]
Notice a terminal velocity [math]v_t[/math] exists when [math]a_x =0[/math]
[math] mg \sin \theta -mkv^2 = ma_x = 0[/math]
[math] \Rightarrow v_t^2 = \frac{g \sin \theta}{k}[/math]
This means that the block does not stop sliding but instead it reaches a minimal (terminal) velocity.

Insert the terminal velocity constant into Newton's second law

[math]\sum F_{ext} = mk \left ( v_t^2 - v^2 \right) = ma_x = m \frac{dv_x}{dt}[/math]


[math]\int dt = \int \frac{dv}{k \left ( v_t^2 - v^2 \right)}[/math]


before we had [math](v dv)[/math] in the numerator and could do a [math]u du[/math] substitution, but not this time, use an integral table.

Integral table [math]\Rightarrow[/math]

[math]\int \frac{dx}{a^2 + b^2x^2} = \frac{1}{ab} \tan^{-1} \frac{bx}{a}[/math]


[math]a^2 = v_t^2 = \frac{g \sin \theta}{k}[/math]
[math]b^2= -1 = i^2[/math]
[math]\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{ikv_t} \tan^{-1} \left ( \frac{iv}{v_t} \right )[/math]
[math] = \frac{-i}{kv_t} \tan^{-1} \left ( \frac{iv}{v_t} \right )[/math]


Identities

[math]i\tan^{-1}(icx) = -\tanh^{-1}(cx) = -\tanh^{-1}\left (\frac{\left | b \right |}{a} x\right )[/math]
[math]\tan^{-1}(z) = \frac{i}{2} \log \left ( \frac{i + z}{i-z}\right )[/math]
[math]\tanh^{-1}(z) = \frac{1}{2} \log \left ( \frac{1 + z}{1-z}\right )[/math]
[math]\tan^{-1}(ix) = \frac{i}{2} \log \left ( \frac{i + ix}{i-ix}\right )=\frac{i}{2} \log \left ( \frac{1 + 1x}{1-x}\right ) = i\tanh^{-1}(x)[/math]


substituting

[math]\int dt = \int \frac{dv}{k \left ( v_t^2 - v^2 \right)}[/math]
[math]t = \frac{-i}{kv_t} \tan^{-1} \left ( \frac{iv}{v_t}\right ) = \frac{1}{kv_t} \tanh^{-1} \left ( \frac{v}{v_t} \right ) [/math]

Solving for [math]v[/math]

[math]v = v_t \tanh \left ( k v_t t \right ) = \frac{dx}{dt}[/math]


[math]\int dx = v_t \int \tanh \left ( k v_t t \right ) dt[/math]


Integral table [math]\Rightarrow[/math]

[math]\int \tanh (x) dx = \ln \left ( \cosh (x) \right )[/math]


[math]x = \frac{1}{k} \ln \left ( \cosh (k v_t t) \right )[/math]

solving for the fall time

[math]t = \frac{\cosh^{-1} \left ( e^{kx} \right)}{kv_t}= \frac{\cosh^{-1} \left ( e^{kx} \right)}{\sqrt{kg \sin \theta}}[/math]


Forest_UCM_NLM#Block_on_incline_with_friction