Difference between revisions of "Forest UCM NLM"

From New IAC Wiki
Jump to navigation Jump to search
Line 57: Line 57:
  
 
The dependence of position with <math>\phi</math> can be seen if you look at how the position changes with time.
 
The dependence of position with <math>\phi</math> can be seen if you look at how the position changes with time.
 +
 +
Consider the motion of a particle in a circle.  At time <math>t_1</math> the particle is at <math>\vec{r}(t_1)</math> and at time <math>t_2</math> the particle is at <math>\vec{r}(t_2)</math>
  
 
Velocity:  
 
Velocity:  

Revision as of 19:10, 18 June 2014


Newton's Laws of Motion

Limits of Classical Mechanic

Classical Mechanics is the formulations of physics developed by Newton (1642-1727), Lagrange(1736-1813), and Hamilton(1805-1865).

It may be used to describe the motion of objects which are not moving at high speeds (0.1[math] c[/math]) nor are microscopically small ( [math]10^{-9} m[/math]).

The laws are formulated in terms of space, time, mass, and force:

Space and Time

Space

Cartesian, Spherical, and Cylindrical coordinate systems are commonly used to describe three-dimensional space.

Cartesian

TF UCM CartCoordSys.png


Vector Notation convention:

Position:

[math]\vec{r} = x \hat{i} + y \hat{j} + z \hat{k} = (x,y,z) = \sum_1^3 r_i \hat{e}_i[/math]

Velocity:

[math]\vec{v}[/math] = [math]\frac{d \vec{r}}{dt}[/math] = [math]\frac{d x}{dt}\hat{i} + x\frac{d \hat{i}}{dt} + cdots[/math]


cartesian unit vectors do not change with time (unit vectors for other coordinate system types do)


[math]\frac{d \hat{i}}{dt} =0 =\frac{d \hat{j}}{dt} =\frac{d \hat{k}}{dt}[/math]
[math]\vec{v}[/math] = [math]\frac{d \vec{r}}{dt}[/math] = [math]\frac{d x}{dt}\hat{i} + \frac{d y}{dt}\hat{i} + \frac{d z}{dt}\hat{i} [/math]

Polar

TF UCM PolarCoordSys.png Vector Notation convention:

Position:

Because [math]\hat{r}[/math] points in a unique direction given by [math]\hat{r} = \frac{\vec{r}}{|r|}[/math] we can write the position vector as

[math]\vec{r} = r \hat{r}[/math]
[math]\vec{r} \ne r \hat{r} +\phi \hat{\phi} [/math]: [math]\phi[/math] does not have the units of length


The unit vectors ([math]\hat{r}[/math] and [math]\hat{\phi}[/math] ) are changing in time. You could express the position vector in terms of the cartesian unit vectors in order to avoid this

[math]\vec{r} = r \cos(\phi) \hat{i} + r \sin(\phi)\hat{j}[/math]

The dependence of position with [math]\phi[/math] can be seen if you look at how the position changes with time.

Consider the motion of a particle in a circle. At time [math]t_1[/math] the particle is at [math]\vec{r}(t_1)[/math] and at time [math]t_2[/math] the particle is at [math]\vec{r}(t_2)[/math]

Velocity:

[math]\vec{v}[/math] = [math]\frac{d \vec{r}}{dt}[/math] = [math]\frac{d x}{dt}\hat{i} + x\frac{d \hat{i}}{dt} + cdots[/math]


cartesian unit vectors do not change with time (unit vectors for other coordinate system types do)


[math]\frac{d \hat{i}}{dt} =0 =\frac{d \hat{j}}{dt} =\frac{d \hat{k}}{dt}[/math]
[math]\vec{v}[/math] = [math]\frac{d \vec{r}}{dt}[/math] = [math]\frac{d x}{dt}\hat{i} + \frac{d y}{dt}\hat{i} + \frac{d z}{dt}\hat{i} [/math]

Spherical

TF UCM SphericalCoordSys.png

Cylindrical

TF UCM CylCoordSys.png

Vectors

Scaler ( Dot ) product

Vector ( Cross ) product

Forest_Ugrad_ClassicalMechanics