Difference between revisions of "Forest UCM NLM"

From New IAC Wiki
Jump to navigation Jump to search
Line 44: Line 44:
  
 
Position:
 
Position:
 +
 +
Because <math>\hat{r}</math> points in a unique direction we can write the position vector as
  
 
:<math>\vec{r} = r \hat{r}</math>
 
:<math>\vec{r} = r \hat{r}</math>
Line 49: Line 51:
 
:<math>\vec{r} \ne r \hat{r} +\phi \hat{\phi} </math>: <math>\phi</math> does not have the units of length
 
:<math>\vec{r} \ne r \hat{r} +\phi \hat{\phi} </math>: <math>\phi</math> does not have the units of length
  
 +
 +
The unit vectors (<math>\hat{r}</math> and  <math>\hat{\phi}</math> ) are changing in time.  You could express the position vector in terms of cartesian unit vector in order to avoid this
 +
 +
:<math>\vec{r} = r \cos(\phi) \hat{i} + r \sin(\phi)\hat{j}</math>
  
 
The dependence of position with \phi can be seen if you look at how the position changes with.
 
The dependence of position with \phi can be seen if you look at how the position changes with.
Line 63: Line 69:
  
 
:<math>\vec{v}</math> = <math>\frac{d \vec{r}}{dt}</math> = <math>\frac{d x}{dt}\hat{i} + \frac{d y}{dt}\hat{i} + \frac{d z}{dt}\hat{i} </math>
 
:<math>\vec{v}</math> = <math>\frac{d \vec{r}}{dt}</math> = <math>\frac{d x}{dt}\hat{i} + \frac{d y}{dt}\hat{i} + \frac{d z}{dt}\hat{i} </math>
 
 
The unit vectors are changing in time.  You could express the position vector in terms of cartesian unit vector in order to avoid this
 
 
:<math>\vec{r} = r \cos(\phi) \hat{i} + r \sin(\phi)\hat{j}</math>
 
  
 
===Spherical===
 
===Spherical===

Revision as of 19:02, 18 June 2014


Newton's Laws of Motion

Limits of Classical Mechanic

Classical Mechanics is the formulations of physics developed by Newton (1642-1727), Lagrange(1736-1813), and Hamilton(1805-1865).

It may be used to describe the motion of objects which are not moving at high speeds (0.1[math] c[/math]) nor are microscopically small ( [math]10^{-9} m[/math]).

The laws are formulated in terms of space, time, mass, and force:

Space and Time

Space

Cartesian, Spherical, and Cylindrical coordinate systems are commonly used to describe three-dimensional space.

Cartesian

TF UCM CartCoordSys.png


Vector Notation convention:

Position:

[math]\vec{r} = x \hat{i} + y \hat{j} + z \hat{k} = (x,y,z) = \sum_1^3 r_i \hat{e}_i[/math]

Velocity:

[math]\vec{v}[/math] = [math]\frac{d \vec{r}}{dt}[/math] = [math]\frac{d x}{dt}\hat{i} + x\frac{d \hat{i}}{dt} + cdots[/math]


cartesian unit vectors do not change with time (unit vectors for other coordinate system types do)


[math]\frac{d \hat{i}}{dt} =0 =\frac{d \hat{j}}{dt} =\frac{d \hat{k}}{dt}[/math]
[math]\vec{v}[/math] = [math]\frac{d \vec{r}}{dt}[/math] = [math]\frac{d x}{dt}\hat{i} + \frac{d y}{dt}\hat{i} + \frac{d z}{dt}\hat{i} [/math]

Polar

TF UCM PolarCoordSys.png Vector Notation convention:

Position:

Because [math]\hat{r}[/math] points in a unique direction we can write the position vector as

[math]\vec{r} = r \hat{r}[/math]
[math]\vec{r} \ne r \hat{r} +\phi \hat{\phi} [/math]: [math]\phi[/math] does not have the units of length


The unit vectors ([math]\hat{r}[/math] and [math]\hat{\phi}[/math] ) are changing in time. You could express the position vector in terms of cartesian unit vector in order to avoid this

[math]\vec{r} = r \cos(\phi) \hat{i} + r \sin(\phi)\hat{j}[/math]

The dependence of position with \phi can be seen if you look at how the position changes with.

Velocity:

[math]\vec{v}[/math] = [math]\frac{d \vec{r}}{dt}[/math] = [math]\frac{d x}{dt}\hat{i} + x\frac{d \hat{i}}{dt} + cdots[/math]


cartesian unit vectors do not change with time (unit vectors for other coordinate system types do)


[math]\frac{d \hat{i}}{dt} =0 =\frac{d \hat{j}}{dt} =\frac{d \hat{k}}{dt}[/math]
[math]\vec{v}[/math] = [math]\frac{d \vec{r}}{dt}[/math] = [math]\frac{d x}{dt}\hat{i} + \frac{d y}{dt}\hat{i} + \frac{d z}{dt}\hat{i} [/math]

Spherical

TF UCM SphericalCoordSys.png

Cylindrical

TF UCM CylCoordSys.png

Vectors

Scaler ( Dot ) product

Vector ( Cross ) product

Forest_Ugrad_ClassicalMechanics