Difference between revisions of "Forest UCM LEq"

From New IAC Wiki
Jump to navigation Jump to search
Line 29: Line 29:
  
 
:<math>  \frac{d}{dt} \left ( \frac{\partial \mathcal {L} }{\partial \dot x} \right ) =  \frac{d}{dt} \left ( \frac{\partial }{\partial \dot x} \right ) \left ( T(\dot x) - U(x) \right ) </math>
 
:<math>  \frac{d}{dt} \left ( \frac{\partial \mathcal {L} }{\partial \dot x} \right ) =  \frac{d}{dt} \left ( \frac{\partial }{\partial \dot x} \right ) \left ( T(\dot x) - U(x) \right ) </math>
:<math>  =  \frac{d}{dt} \left ( \frac{\partial }{\partial \dot x} \right )  T(\dot x) =  \frac{d}{dt} m \dot x =  \frac{d}{dt} p_x = \dot{p}_x = F_x </math>  Newtons second law
+
:<math>  =  \frac{d}{dt} \left ( \frac{\partial }{\partial \dot x} \right )  T(\dot x) =  \frac{d}{dt} m \dot x =  \frac{d}{dt} p_x = \dot{p}_x = F_x </math>  Newton's second law in an Inertial reference frame
  
  

Revision as of 14:20, 25 October 2014

Lagrange's Foramlism for Classical Mechanics

Hamilton's principle

Hamilton's principle falls out of the calculus of variations in that seeking the shortest time interval is the focus of the variations.


Of all possible paths along which a dynamical system may move from on point to another within a specified time interval, the actual path followed is that which minimizes the time integral of the difference between the kinetic and potential energies.

Casting this in the language of the calculus of variations

[math]S \equiv \int_{t_1}^{t_2} \left ( T(\dot x) - U(x) \right ) dt = \int_{t_1}^{t_2} f(x,\dot x ; t) dt = \int_{t_1}^{t_2} \mathcal {L} ( x, \dot x;t) dt [/math]

if you want the above "action" integral to be stationary then according to the calculus of variations you want the Euler-Lagrange equation to be satisfied where

[math] \left [ \left ( \frac{\partial f}{\partial x} \right ) - \frac{d}{dt} \left ( \frac{\partial f}{\partial \dot x} \right ) \right ] =0 [/math]


or

[math] \left [ \left ( \frac{\partial \mathcal {L} }{\partial x} \right ) - \frac{d}{dt} \left ( \frac{\partial \mathcal {L} }{\partial \dot x} \right ) \right ] =0 [/math]

here [math]x^{\prime} = \frac{d x}{d t} \equiv \dot x[/math]

[math] \left ( \frac{\partial \mathcal {L} }{\partial x} \right ) = \frac{\partial }{\partial x} \left ( T(\dot x) - U(x) \right ) = -\frac{\partial U(x)}{\partial x} = F_x[/math] if I have conservative forces


[math] \frac{d}{dt} \left ( \frac{\partial \mathcal {L} }{\partial \dot x} \right ) = \frac{d}{dt} \left ( \frac{\partial }{\partial \dot x} \right ) \left ( T(\dot x) - U(x) \right ) [/math]
[math] = \frac{d}{dt} \left ( \frac{\partial }{\partial \dot x} \right ) T(\dot x) = \frac{d}{dt} m \dot x = \frac{d}{dt} p_x = \dot{p}_x = F_x [/math] Newton's second law in an Inertial reference frame


thus

[math] \left [ \left ( \frac{\partial \mathcal {L} }{\partial x} \right ) - \frac{d}{dt} \left ( \frac{\partial \mathcal {L} }{\partial \dot x} \right ) \right ] = F_x - F_x = 0 [/math]

Lagrange's Equations in generalized coordinates

As shown above, Hamilton's principle leads to a re-expression of Newton's second law through the Euler-Lagrange Equation in a differential form known as Lagrange's equations.


[math] \left [ \left ( \frac{\partial \mathcal {L} }{\partial x} \right ) = \frac{d}{dt} \left ( \frac{\partial \mathcal {L} }{\partial \dot x} \right ) \right ] [/math]


Forest_Ugrad_ClassicalMechanics