Difference between revisions of "Forest UCM Energy CentralForce"

From New IAC Wiki
Jump to navigation Jump to search
Line 41: Line 41:
 
:<math>\frac{df}{dr} dr +  \frac{df}{d \theta} d\theta +  \frac{df}{d\phi} d\phi =\vec \nabla f \cdot d \vec r</math>
 
:<math>\frac{df}{dr} dr +  \frac{df}{d \theta} d\theta +  \frac{df}{d\phi} d\phi =\vec \nabla f \cdot d \vec r</math>
 
:<math>\vec \nabla f \cdot d \vec r = \vec \nabla f \cdot \left ( dr \hat r + r d \theta \hat \theta + r \sin \phi d \phi \hat \phi \right )</math>
 
:<math>\vec \nabla f \cdot d \vec r = \vec \nabla f \cdot \left ( dr \hat r + r d \theta \hat \theta + r \sin \phi d \phi \hat \phi \right )</math>
::<math>= \left . \vec \nabla f \right |_r dr +\left . \vec \nabla f \right |_{\theta} r d\theta +\left . \vec \nabla f \right |_{\phi} r \sin \theta d\phi  </math>
+
::<math>= \left ( \vec \nabla f \right )_r dr +\left ( \vec \nabla f \right )_{\theta} r d\theta +\left ( \vec \nabla f \right )_{\phi} r \sin \theta d\phi  </math>
  
 
comparing terms of the above with  
 
comparing terms of the above with  
 
+
:<math>\left ( \vec \nabla f \right )_r dr  =\frac{df}{dr} dr</math>
: <math>d \vec r = dr \hat r + r d \theta \hat \theta + r \sin \phi d \phi \hat \phi</math>
+
:<math>\left ( \vec \nabla f \right )_{\theta} r d\theta =\frac{df}{d \theta} d\theta </math>
 +
:<math> \left ( \vec \nabla f \right )_{\phi} r \sin \theta d\phi =\frac{df}{d\phi} d\phi</math>
  
  

Revision as of 13:48, 27 September 2014

A central force is defined as a force depends only on separation distance

[math]\vec{F} = f(\vec r) \hat r[/math]

ie

Coulomb force and gravitation force.

Spherical Coordinates

Forest UCM SphericalCoordUnitVec.png

Forest_UCM_NLM_Ch1_CoordSys#Spherical

Gradient in spherical coordinates

The differential change of [math]\vec r[/math] in spherical coordinates occurs in three directions.


In the radial direction

[math]dr \hat r[/math]

In the polar angle direction

[math]r d \theta \hat \theta[/math]

In the azimuthal angle direction

[math]r \sin \phi d \phi \hat \phi[/math]

The differential force of the displacement vector in spherical coordinates is

[math]d \vec r = dr \hat r + r d \theta \hat \theta + r \sin \phi d \phi \hat \phi[/math]

The derivative may be represented as

[math]df = f(x+dx) -f(x) = \frac{df}{dx} dx[/math]

in three dimensional cartesian coordinates this may be written in terms of the gradient as

[math]df = \frac{df}{dx} dx + \frac{df}{dy} dy + \frac{df}{dz} dz =\vec \nabla f \cdot d \vec r[/math]

To determine the gradient in sperical coordinates on just compares the two equations

[math]\frac{df}{dr} dr + \frac{df}{d \theta} d\theta + \frac{df}{d\phi} d\phi =\vec \nabla f \cdot d \vec r[/math]
[math]\vec \nabla f \cdot d \vec r = \vec \nabla f \cdot \left ( dr \hat r + r d \theta \hat \theta + r \sin \phi d \phi \hat \phi \right )[/math]
[math]= \left ( \vec \nabla f \right )_r dr +\left ( \vec \nabla f \right )_{\theta} r d\theta +\left ( \vec \nabla f \right )_{\phi} r \sin \theta d\phi [/math]

comparing terms of the above with

[math]\left ( \vec \nabla f \right )_r dr =\frac{df}{dr} dr[/math]
[math]\left ( \vec \nabla f \right )_{\theta} r d\theta =\frac{df}{d \theta} d\theta [/math]
[math] \left ( \vec \nabla f \right )_{\phi} r \sin \theta d\phi =\frac{df}{d\phi} d\phi[/math]



Forest_UCM_Energy#Central_Forces