FC Analysis

From New IAC Wiki
Revision as of 03:57, 5 April 2010 by Oborn (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Go Back

FC analysis using ADC channel current distribution

For each ADC channel:

[math] ADCSum^{channel}=\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}}[/math]
[math] ADCErr^{channel}=\sqrt{\frac{\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}}}{pulses}}[/math]

For distribution over all ADC channel:

[math] ADC^{avg}=\frac{\sum_{i=1}^{16}{ADCSum^{channel}*i}}{\sum_{i=1}^{16}{ADC_{i}}}[/math]
[math] ADC^{err}=\frac{\sum_{i=1}^{16}{ADCErr^{channel}*i}}{\sum_{i=1}^{16}{ADC_{i}}}[/math]

FC analysis using pulse by pulse ADC channel mean value distribution

For each beam pulse:

[math] ADC^{avg}_{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}}[/math]

For distribution over all beam pulses:

[math] ADC^{avg}=\frac{\sum_{i=1}^{pulses}{ADC^{avg}_{pulse}}}{pulses}[/math]
[math] ADC^{err}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC^{avg}_{pulse} - ADC^{avg}\right)^{2}}}}[/math]

Here is:
1. ADC# = bridge#
2. Pulse# = ReadOut# = Entry# = Event#

FC data 23.png

FC plot 2 4.png

Some examples of ADC mean value distribution. Here are:
1. x axis: ADC mean value for one pulse
2. y axis: number of pulse w/ that ADC mean value
1477 1.png1473 1.png
1461 1.png1465 1.png

3D Faraday cup plot

Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field) and ADC (horizontal axis).


Faraday cup ADC channel distribution

Faraday cup rain

Go Up