Difference between revisions of "FC Analysis"

From New IAC Wiki
Jump to navigation Jump to search
Line 2: Line 2:
For each beam pulse:<br>
For each beam pulse:<br>
  <math> ADC_{ave}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}};</math>
  <math> ADC_{avg}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}};</math>
For distribution over all beam pulses (assuming it's Gaussian):<br>
For distribution over all beam pulses (assuming it's Gaussian):<br>
  <math> ADC_{ave}=\frac{\sum_{i=1}^{pulses}{ADC_{ave}^{pulse}}}{pulses};</math><br>
  <math> ADC_{ave}=\frac{\sum_{i=1}^{pulses}{ADC_{aveg^{pulse}}}{pulses};</math><br>
  <math> ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{ave}^{pulse} - ADC_{ave}\right)^{2}}}};</math>
  <math> ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{avg}^{pulse} - ADC_{avg}\right)^{2}}}};</math>
<br>Here is:<br>
<br>Here is:<br>

Revision as of 21:43, 27 March 2010

Go Back

For each beam pulse:

[math] ADC_{avg}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}};[/math]

For distribution over all beam pulses (assuming it's Gaussian):

[math] ADC_{ave}=\frac{\sum_{i=1}^{pulses}{ADC_{aveg^{pulse}}}{pulses};[/math]
[math] ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{avg}^{pulse} - ADC_{avg}\right)^{2}}}};[/math]

Here is:
1. ADC# = bridge#
2. Pulse# = ReadOut# = Entry# = Event#

FC data 22.png

FC plot 2 4.png

Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field) and ADC (horizontal axis).


Go Up