# Difference between revisions of "Determining the uncertainty of Eγ"

Jump to navigation
Jump to search

Line 24: | Line 24: | ||

<math>P_n=m_nv</math> = 188MeV/c ± 2.2% | <math>P_n=m_nv</math> = 188MeV/c ± 2.2% | ||

+ | |||

+ | Δ<math>P_n=4MeV/c</math> | ||

Δ<math>\theta_n</math> can be determined knowing that the detector is 3 meters away and the dimensions of the detector are 5cm wide by 5cm tall. | Δ<math>\theta_n</math> can be determined knowing that the detector is 3 meters away and the dimensions of the detector are 5cm wide by 5cm tall. |

## Revision as of 09:15, 12 June 2008

To determine the uncertainty in Eγ we pick an angle for the neutron within [

, + Δ ] and a momentum of the neutron between [ , + Δ ].What are reasonable Δ

and Δ ?is determined by time of flight.

Knowns:

= 939.565 ± 0.00028

d = 3 ± 0.005 m

t = 50 ± 1 ns

Fractional Uncertainties

= 0.2c ± 2.2%

= 188MeV/c ± 2.2%

Δ

Δ

can be determined knowing that the detector is 3 meters away and the dimensions of the detector are 5cm wide by 5cm tall.